हिंदी

In the Given Figure, Mp is the Bisector of ∠P and Rn is the Bisector of ∠R of Parallelogram Pqrs. Prove that Pmrn is a Parallelogram. - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, MP is the bisector of ∠P and RN is the bisector of ∠R of parallelogram PQRS. Prove that PMRN is a parallelogram.

योग

उत्तर

Construction: Join PR.

Proof:

∠QPM = `(1)/(2)∠"P"`    ....(AP is the bisector of ∠P)

∠SRN = `(1)/(2)∠"R"`     ....(RN is the bisector of ∠R)

⇒ ∠QPM = ∠SRN      (i)....[∠P =∠R (Opposite angles of a parallelogram)]
Now, ∠QPR = ∠SRN (ii)....[Alternate angles since PQ || SR)
Subtracting (ii) from (i), we get
∠QPM - ∠QPR = ∠SRN - ∠SRP
⇒ ∠RPM =∠PRN
⇒ PM || RN  ...(Alternate angles are equal)
Similarly, RM || PN
Hence, PMPN is a parallelogram.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Quadrilaterals - Exercise 19.1

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 19 Quadrilaterals
Exercise 19.1 | Q 13
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×