हिंदी

The diagonal BD of a parallelogram ABCD bisects angles B and D. Prove that ABCD is a rhombus. - Mathematics

Advertisements
Advertisements

प्रश्न

The diagonal BD of a parallelogram ABCD bisects angles B and D. Prove that ABCD is a rhombus.

योग

उत्तर

Given: ABCD is a parallelogram where the diagonal BD bisects
parallelogram  ABCD at angle B and D

To Prove:  ABCD is a rhombus

Proof: Let us draw a parallelogram  ABCD where the diagonal BD bisects the parallelogram at an angle B and D.

Construction: Let us join AC as a diagonal of the parallelogram ABCD

Since ABCD  is a parallelogram in which diagonal BD bisects ∠B and ∠D

BD bisect ∠B,

∠ABD = ∠CBD = `1/2`∠ABC

BD bisect ∠D,

∠ADB = ∠CDB = `1/2`∠ABC

∴ ∠ABC = ∠ADC    ...(Opposite angles of parallelogram are equal)

∴ `1/2`∠ABC = `1/2` ∠ADC

∠ABD = ∠ADB and ∠CBD = ∠CDB

∴ AD = AB and CD = BC

As ABCD is a parallelogram, opposite sides are equal

AB = CD and AD = BC

AB = BC = CD = AD

∴ ABCD is a rhombus.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Rectilinear Figures [Quadrilaterals: Parallelogram, Rectangle, Rhombus, Square and Trapezium] - Exercise 14 (C) [पृष्ठ १८१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 14 Rectilinear Figures [Quadrilaterals: Parallelogram, Rectangle, Rhombus, Square and Trapezium]
Exercise 14 (C) | Q 2 | पृष्ठ १८१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×