हिंदी
महाराष्ट्र स्टेट बोर्डएसएससी (मराठी माध्यम) १० वीं कक्षा

केंद्र O असलेल्या वर्तुळाच्या कंस ACB मध्ये ∠ACB अंतर्लिखित केला आहे. जर m∠ACB = 65° तर m(कंस ACB) = किती? - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

प्रश्न

केंद्र O असलेल्या वर्तुळाच्या कंस ACB मध्ये ∠ACB अंतर्लिखित केला आहे. जर m∠ACB = 65° तर m(कंस ACB) = किती? 

विकल्प

  •  65° 

  • 130°

  • 295°

  • 230°

MCQ

उत्तर

230°

स्पष्टीकरण :

m∠ACB = `1/2 "m"("कंस AB")` ....[अंतर्लिखित कोनाचे प्रमेय]

∴ `65^\circ = 1/2 "m"("कंस AB")`

∴ m(कंस AB) = 130°

∴ m(कंस ACB) = 360° − m(कंस AB)

= 360° − 130°

= 230°

shaalaa.com
अंतर्लिखित कोनाचे प्रमेय
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: वर्तुळ - संकीर्ण प्रश्नसंग्रह 3 [पृष्ठ ८३]

APPEARS IN

बालभारती Geometry (Mathematics 2) [Marathi] 10 Standard SSC Maharashtra State Board
अध्याय 3 वर्तुळ
संकीर्ण प्रश्नसंग्रह 3 | Q 1. (6) | पृष्ठ ८३

संबंधित प्रश्न

आकृती मध्ये, `square`PQRS हा चक्रीय आहे. बाजू PQ ≅ बाजू RQ. ∠PSR = 110°, तर 

(1) ∠PQR = किती?

(2) m(कंस PQR) = किती?

(3) m(कंस QR) = किती?

(4) ∠PRQ = किती?


आकृती मध्ये रेषा PR वर्तुळाला बिंदू Q मध्ये स्पर्श करते. या आकृतीच्या आधारे खालील प्रश्नाचं उत्तर लिहा.

∠QTS शी एकरूप असणारे कोन कोणते?


दिलेल्या आकृतीतील, जीवा EF || जीवा GH तर सिद्ध करा, जीवा EG ≅ जीवा FH. पुढे दिलेल्या सिद्धतेतील रिकाम्या जागा भरा आणि सिद्धता लिहा.

सिद्धता:

रेख GF काढला.

∠EFG = ∠FGH .........`square` (i)

∠EFG = `square` ........… [अंतर्लिखित कोनाचे प्रमेय] (ii)

∠FGH = `square` .......… [अंतर्लिखित कोनाचे प्रमेय] (iii)

∴ m(कंस EG) = `square` ......[(i), (ii) व (iii) वरून]

जीवा EG ≅ जीवा FH ..............[एकरूप कंसांच्या संगत जीवा]


खालील प्रमेय सिद्ध करा:

एकाच कंसात अंतर्लिखित झालेले सर्व कोन एकरूप असतात.


आकृतीमध्ये, जीवा LM ≅ जीवा LN आणि ∠L = 35°, तर

i. m(कंस MN) = किती?

ii. m(कंस LN) = किती? 


आकृतीमध्ये, वर्तुळाच्या दोन जीवा EF आणि GH परस्परांना समांतर आहेत. O वर्तुळकेंद्र असेल, तर ∠EOG ≅ ∠FOH दाखवा.


`square`ABCD हा चक्रीय चौकोन आहे. m(कंस ABC) = 230°. तर ∠ABC, ∠CDA, ∠CBE, यांची मापे काढा.


सोबतच्या आकृतीत, `square`ABCD हा चक्रीय चौकोन आहे. m(कंस BC) = 90° आणि ∠DBC = 55°, तर ∠BCD चे माप काढा.



वरील आकृतीत जीवा PQ आणि जीवा RS एकमेकींना बिंदू T मध्ये छेदतात. जर ∠STQ = 58° आणि ∠PSR = 24°, तर ∠STQ = `1/2` [m(कंस PR) + m(कंस SQ)] या विधानाचा पडताळा घेण्यासाठी खालील कृती पूर्ण करा.

कृती:

ΔPTS मध्ये,

∠SPQ = ∠STQ - `square`  .......[∵ त्रिकोणाच्या बाहयकोनाचे प्रमेय.]

∴ ∠SPQ = 34°

∴ m(कंस QS) = 2 × `square`° = 68°  .......[∵ `square`]

तसेच m(कंस PR) = 2∠PSR = `square`°

∴ `1/2` [m(कंस QS) + m(कंस PR)] = `1/2` × `square`° = 58°  .......(I)

परंतु  ∠STQ = 58° .........(II) [दिलेले]

∴ `1/2` [m(कंस PR) + m(कंस QS)] = ∠______   ........[(I) व (II) वरून]


वरील आकृतीत ∠L = 35° असेल, तर

  1. m(कंस MN) = किती?
  2. m(कंस MLN) = किती?

उकल:

  1. ∠L = `1/2` m(कंस MN) ............(अंतर्लिखित कोनाचे प्रमेय)
    ∴ `square = 1/2` m(कंस MN)
    ∴ 2 × 35 = m(कंस MN)
    ∴ m(कंस MN) = `square`
  2. m(कंस MLN) = `square` - m(कंस MN) ...........(कंसाच्या मापाची व्याख्या)
    = 360° - 70°
    ∴ m(कंस MLN) = `square`

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×