Advertisements
Advertisements
प्रश्न
आकृतीमध्ये, जीवा LM ≅ जीवा LN आणि ∠L = 35°, तर
i. m(कंस MN) = किती?
ii. m(कंस LN) = किती?
उत्तर
i. ∠L = `1/2`(कंस MN) ...........[अंतर्लिखित कोनाचे प्रमेय]
∴ 35° = `1/2`m(कंस MN)
∴ 2 × 35° = m(कंस MN) = 70°
ii. ΔLMN मध्ये, जीवा LM ≅ जीवा LN
∴ ∠M = ∠N ............[समद्विभुज त्रिकोणाचे प्रमेय]
∴ ∠L + ∠M + ∠N = 180° ..............…[त्रिकोणाच्या कोनांच्या मापांची बेरीज 180° असते.]
∴ 35° + ∠M + ∠M = 180°
∴ 2∠M = 180° - 35° = 145°
∴ ∠M = `145^circ/2`
आता, m(कंस LN) = 2 × ∠M …...........[अंतर्लिखित कोनाचे प्रमेय]
= `2 xx 145^circ/2 = 145^circ`
APPEARS IN
संबंधित प्रश्न
आकृती मध्ये, `square`PQRS हा चक्रीय आहे. बाजू PQ ≅ बाजू RQ. ∠PSR = 110°, तर
(1) ∠PQR = किती?
(2) m(कंस PQR) = किती?
(3) m(कंस QR) = किती?
(4) ∠PRQ = किती?
केंद्र O असलेल्या वर्तुळाच्या कंस ACB मध्ये ∠ACB अंतर्लिखित केला आहे. जर m∠ACB = 65° तर m(कंस ACB) = किती?
दिलेल्या आकृतीत, जीवा EF || जीवा GH. तर सिद्ध करा, जीवा EG ≅ जीवा FH . पुढे दिलेल्या सिद्धतेतील रिकाम्या जागा भरा आणि सिद्धता लिहा. सिद्धता : रेख GF काढला.
∠EFG = ∠FGH ....... ______ (I)
∠EFG = ______ (अंतर्लिखित कोनाचे प्रमेय) (II)
∠FGH = ______ (अंतर्लिखित कोनाचे प्रमेय) (III)
∴ m (कंस EG) = ______ [(I), (II) व (III) वरून]
जीवा EG ≅ जीवा FH .......(______)
आकृती मध्ये रेषा PR वर्तुळाला बिंदू Q मध्ये स्पर्श करते. या आकृतीच्या आधारे खालील प्रश्नाचं उत्तर लिहा.
जर ∠TAS = 65°, तर ∠TQS आणि कंस TS यांची मापे सांगा.
सिद्ध करा: एकाच कंसात अंतर्लिखित झालेले कोन हे एकरूप असतात.
पक्ष : ∠PQR व ∠PSR एकाच कंसात अंतर्लिखित झालेले कोन आहेत, कंस PTR हा त्या कोनांनी अंतर्खंडित केलेला कंस आहे.
साध्य : ∠PQR ≅ ∠PSR
सिद्धता:
m∠PQR = `1/2 xx` [m(कंस PTR)] .......(i) `square`
m∠`square = 1/2 xx` [mकंस PTR] ........(ii) `square`
m∠`square` = m∠PSR ..................[(i) व (ii) वरून]
∴ ∠PQR ≅ ∠PSR
खालील प्रमेय सिद्ध करा:
एकाच कंसात अंतर्लिखित झालेले सर्व कोन एकरूप असतात.
आकृतीमध्ये, `square`PQRS हा चक्रीय चौकोन आहे. बाजू PQ ≅ बाजू RQ, ∠PSR = 110°, तर m(कंस PQR) = किती?
आकृतीमध्ये, `square`PQRS हा चक्रीय चौकोन आहे. बाजू PQ ≅ बाजू RQ, ∠PSR = 110°, तर m(कंस QR) = किती?
खालील आकृतीमध्ये, P केंद्र असलेले वर्तुळ ΔABC मध्ये अंतर्लिखित असून बाजू AB, बाजू BC व बाजू AC ला अनुक्रमे L, M व N बिंदूत स्पर्श करते. या वर्तुळाची त्रिज्या r आहे. सिद्ध करा, की : A(ΔABC) = `1/2`(AB + BC + AC) × r
वरील आकृतीत ∠L = 35° असेल, तर
- m(कंस MN) = किती?
- m(कंस MLN) = किती?
उकल:
- ∠L = `1/2` m(कंस MN) ............(अंतर्लिखित कोनाचे प्रमेय)
∴ `square = 1/2` m(कंस MN)
∴ 2 × 35 = m(कंस MN)
∴ m(कंस MN) = `square` - m(कंस MLN) = `square` - m(कंस MN) ...........(कंसाच्या मापाची व्याख्या)
= 360° - 70°
∴ m(कंस MLN) = `square`