Advertisements
Advertisements
प्रश्न
खालील आकृतीमध्ये, P केंद्र असलेले वर्तुळ ΔABC मध्ये अंतर्लिखित असून बाजू AB, बाजू BC व बाजू AC ला अनुक्रमे L, M व N बिंदूत स्पर्श करते. या वर्तुळाची त्रिज्या r आहे. सिद्ध करा, की : A(ΔABC) = `1/2`(AB + BC + AC) × r
उत्तर
पक्ष: बाजू AB, बाजू BC व बाजू AC वर्तुळाला अनुक्रमे L, M व N बिंदूत स्पर्श करतात. त्रिज्या = r
साध्य: A(ΔABC) = `1/2`(AB + BC + AC) × r
रचना: रेख PM, रेख PN, रेख PL, रेख AP, रेख BP आणि रेख CP जोडा.
सिद्धता:
बाजू BC वर्तुळाला M बिंदूत स्पर्श करते.
∴ रेख PM ⊥ रेख BC ...........[स्पर्शिका त्रिज्येला लंब असते.]
∴ A(ΔBPC) = `1/2 xx "BC" xx "PM"`
∴ A(ΔBPC) = `1/2 xx "BC" xx "r"` ..........(i) [∵ PM = त्रिज्या = r]
त्याचप्रमाणे,
A(ΔAPB) = `1/2 xx "AB" xx "r"` ......(ii)
A(ΔAPC) = `1/2 xx "AC" xx "r"` ......(iii)
आता,
A(ΔABC) = A(ΔAPB) + A(ΔBPC) + A (ΔAPC) ............[कंसांच्या मापांच्या बेरजेचा गुणधर्म]
= `1/2 xx "AB" xx "r" + 1/2 xx "BC" xx "r" + 1/2 xx "AC" xx "r"` ...........[(i), (ii) व (iii) वरून]
= `1/2`r (AB + BC + AC)
∴ A(ΔABC) = `1/2`(AB + BC + AC) × r
APPEARS IN
संबंधित प्रश्न
आकृती मध्ये, `square`PQRS हा चक्रीय आहे. बाजू PQ ≅ बाजू RQ. ∠PSR = 110°, तर
(1) ∠PQR = किती?
(2) m(कंस PQR) = किती?
(3) m(कंस QR) = किती?
(4) ∠PRQ = किती?
केंद्र O असलेल्या वर्तुळाच्या कंस ACB मध्ये ∠ACB अंतर्लिखित केला आहे. जर m∠ACB = 65° तर m(कंस ACB) = किती?
दिलेल्या आकृतीत, जीवा EF || जीवा GH. तर सिद्ध करा, जीवा EG ≅ जीवा FH . पुढे दिलेल्या सिद्धतेतील रिकाम्या जागा भरा आणि सिद्धता लिहा. सिद्धता : रेख GF काढला.
∠EFG = ∠FGH ....... ______ (I)
∠EFG = ______ (अंतर्लिखित कोनाचे प्रमेय) (II)
∠FGH = ______ (अंतर्लिखित कोनाचे प्रमेय) (III)
∴ m (कंस EG) = ______ [(I), (II) व (III) वरून]
जीवा EG ≅ जीवा FH .......(______)
आकृती मध्ये रेषा PR वर्तुळाला बिंदू Q मध्ये स्पर्श करते. या आकृतीच्या आधारे खालील प्रश्नाचं उत्तर लिहा.
जर ∠TAS = 65°, तर ∠TQS आणि कंस TS यांची मापे सांगा.
दिलेल्या आकृतीतील, जीवा EF || जीवा GH तर सिद्ध करा, जीवा EG ≅ जीवा FH. पुढे दिलेल्या सिद्धतेतील रिकाम्या जागा भरा आणि सिद्धता लिहा.
सिद्धता:
रेख GF काढला.
∠EFG = ∠FGH .........`square` (i)
∠EFG = `square` ........… [अंतर्लिखित कोनाचे प्रमेय] (ii)
∠FGH = `square` .......… [अंतर्लिखित कोनाचे प्रमेय] (iii)
∴ m(कंस EG) = `square` ......[(i), (ii) व (iii) वरून]
जीवा EG ≅ जीवा FH ..............[एकरूप कंसांच्या संगत जीवा]
खालील प्रमेय सिद्ध करा:
एकाच कंसात अंतर्लिखित झालेले सर्व कोन एकरूप असतात.
आकृतीमध्ये, जीवा LM ≅ जीवा LN आणि ∠L = 35°, तर
i. m(कंस MN) = किती?
ii. m(कंस LN) = किती?
`square`ABCD हा चक्रीय चौकोन आहे. m(कंस ABC) = 230°. तर ∠ABC, ∠CDA, ∠CBE, यांची मापे काढा.
सोबतच्या आकृतीत, `square`ABCD हा चक्रीय चौकोन आहे. m(कंस BC) = 90° आणि ∠DBC = 55°, तर ∠BCD चे माप काढा.
वरील आकृतीत ∠L = 35° असेल, तर
- m(कंस MN) = किती?
- m(कंस MLN) = किती?
उकल:
- ∠L = `1/2` m(कंस MN) ............(अंतर्लिखित कोनाचे प्रमेय)
∴ `square = 1/2` m(कंस MN)
∴ 2 × 35 = m(कंस MN)
∴ m(कंस MN) = `square` - m(कंस MLN) = `square` - m(कंस MN) ...........(कंसाच्या मापाची व्याख्या)
= 360° - 70°
∴ m(कंस MLN) = `square`