हिंदी
महाराष्ट्र स्टेट बोर्डएसएससी (मराठी माध्यम) १० वीं कक्षा

□ABCD हा चक्रीय चौकोन आहे. m(कंस ABC) = 230°. तर ∠ABC, ∠CDA, ∠CBE, यांची मापे काढा. - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

प्रश्न

`square`ABCD हा चक्रीय चौकोन आहे. m(कंस ABC) = 230°. तर ∠ABC, ∠CDA, ∠CBE, यांची मापे काढा.

योग

उत्तर

m(कंस ABC) = 230° ...........(i) [पक्ष]

∴ m(कंस ADC) + m(कंस ABC) = 360° ......…[वर्तुळाचे माप 360° असते.]

∴ m(कंस ADC) = 360° – m(कंस ABC)

∴ m(कंस ADC) = 360° – 230° .........[(i) वरून]

∴ m(कंस ADC) = 130°

∠ABC = `1/2`m(कंस ADC) ..........[अंतर्लिखित कोनाचे प्रमेय]

= `1/2 xx 130^circ = 65^circ`

आता, ∠CDA = `1/2`m (कंस ABC) ................[अंतर्लिखित कोनाचे प्रमेय]

∴ ∠CDA = `1/2 xx 230^circ = 115^circ`

∠CBE = ∠CDA ......(iii) [चक्रीय चौकोनाचा बाह्यकोन त्याच्या संलग्नसंमुख कोनाशी एकरूप असतो.]

∴ ∠CBE = 115° .....[(ii) व (iii) वरून]

∴ ∠ABC = 65°, ∠CDA = 115°, ∠CBE = 115°.

shaalaa.com
अंतर्लिखित कोनाचे प्रमेय
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: वर्तुळ - Q ७

संबंधित प्रश्न

आकृती मध्ये, `square`PQRS हा चक्रीय आहे. बाजू PQ ≅ बाजू RQ. ∠PSR = 110°, तर 

(1) ∠PQR = किती?

(2) m(कंस PQR) = किती?

(3) m(कंस QR) = किती?

(4) ∠PRQ = किती?


केंद्र O असलेल्या वर्तुळाच्या कंस ACB मध्ये ∠ACB अंतर्लिखित केला आहे. जर m∠ACB = 65° तर m(कंस ACB) = किती? 


दिलेल्या आकृतीत, जीवा EF || जीवा GH. तर सिद्ध करा, जीवा EG ≅ जीवा FH . पुढे दिलेल्या सिद्धतेतील रिकाम्या जागा भरा आणि सिद्धता लिहा. सिद्धता : रेख GF काढला. 

∠EFG = ∠FGH ....... ______ (I)

∠EFG = ______ (अंतर्लिखित कोनाचे प्रमेय) (II)

∠FGH = ______ (अंतर्लिखित कोनाचे प्रमेय) (III)

∴ m (कंस EG) = ______ [(I), (II) व (III) वरून]

जीवा EG ≅ जीवा FH .......(______)  


आकृती मध्ये रेषा PR वर्तुळाला बिंदू Q मध्ये स्पर्श करते. या आकृतीच्या आधारे खालील प्रश्नाचं उत्तर लिहा.

जर ∠TAS = 65°, तर ∠TQS आणि कंस TS यांची मापे सांगा.


आकृतीमध्ये, जीवा LM ≅ जीवा LN आणि ∠L = 35°, तर

i. m(कंस MN) = किती?

ii. m(कंस LN) = किती? 


आकृतीमध्ये, `square`PQRS हा चक्रीय चौकोन आहे. बाजू PQ ≅ बाजू RQ, ∠PSR = 110°, तर m(कंस PQR) = किती?

 


आकृतीमध्ये, `square`PQRS हा चक्रीय चौकोन आहे. बाजू PQ ≅ बाजू RQ, ∠PSR = 110°, तर m(कंस QR) = किती? 

 


आकृतीमध्ये, वर्तुळाच्या दोन जीवा EF आणि GH परस्परांना समांतर आहेत. O वर्तुळकेंद्र असेल, तर ∠EOG ≅ ∠FOH दाखवा.


खालील आकृतीमध्ये, P केंद्र असलेले वर्तुळ ΔABC मध्ये अंतर्लिखित असून बाजू AB, बाजू BC व बाजू AC ला अनुक्रमे L, M व N बिंदूत स्पर्श करते. या वर्तुळाची त्रिज्या r आहे. सिद्ध करा, की : A(ΔABC) = `1/2`(AB + BC + AC) × r

 


सोबतच्या आकृतीत, `square`ABCD हा चक्रीय चौकोन आहे. m(कंस BC) = 90° आणि ∠DBC = 55°, तर ∠BCD चे माप काढा.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×