Advertisements
Advertisements
प्रश्न
खालील बिंदू एकरेषीय आहेत की नाहीत हे ठरवा.
L(-2, 3), M(1, -3), N(5, 4)
उत्तर
अंतराच्या सूत्रानुसार,
d(L, M) = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`
= `sqrt([1 - (-2)]^2 + [-3 - 3]^2)`
= `sqrt((1 + 2)^2 + (-3 - 3)^2)`
= `sqrt(3^2 + (-6)^2)`
= `sqrt(9 + 36)`
∴ d(L, M) = `sqrt45 = 3sqrt5` ....................(i)
d(M, N) = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`
= `sqrt((5 - 1)^2 + [4 - (-3)]^2)`
= `sqrt((5 - 1)^2 + (4 + 3)^2)`
= `sqrt(4^2 + 7^2)`
= `sqrt(16 + 49)`
∴ d(M, N) = `sqrt65` ....................(ii)
d(L, N) = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`
= `sqrt([5 - (-2)]^2 + (4 - 3)^2)`
= `sqrt((5 + 2)^2 + (4 - 3)^2)`
= `sqrt(7^2 + 1^2)`
= `sqrt(49 + 1)`
= `sqrt50`
∴ d(L, N) = `sqrt50 = 5sqrt2` ....................(iii)
(i) आणि (iii) ची बेरीज करून,
d(L, M) + d(L, N) = `3sqrt5 + 5sqrt2 ≠ sqrt65`
∴ d(L, M) + d(L, N) ≠ d(M, N) .......[(ii) वरून]
∴ बिंदू L, M आणि N एकरेषीय नाहीत.
APPEARS IN
संबंधित प्रश्न
A(1, 2), B(1, 6), C(1 + `2sqrt3` , 4) हे समभुज त्रिकोणाचे शिरोबिंदू आहेत हे दाखवा.
X-अक्षावरील असा बिंदू शोधा की जो P(2,-5) आणि Q(-2,9) पासून समदूर असेल.
खालील बिंदूंतील अंतर काढा.
P(-6, -3), Q(-1, 9)
एका त्रिकोणाचे शिरोबिंदू A(-3,1), B(0,-2) आणि C(1,3) आहेत, तर त्या त्रिकोणाच्या परिकेंद्राचे निर्देशक काढा.
खालील बिंदूंना जोडणारे रेषाखंड त्रिकोण तयार करू शकतील का? त्रिकोण तयार झाल्यास त्याचा बाजूंवरून होणारा प्रकार सांगा.
L(6, 4) , M(-5, -3) , N(-6, 8)
बिंदू P(–1, 1) आणि बिंदू Q(5, –7) आहेत. तर बिंदू P आणि Q मधील अंतर ______
बिंदू Q(3, –7) आणि बिंदू R(3, 3) आहेत, तर बिंदू Q आणि R मधील अंतर किती?
उकल:
समजा, Q(x1, y1) आणि बिंदू R(x2, y2)
x1 = 3, y1 = –7 आणि x2 = 3, y2 = 3
अंतराच्या सूत्रानुसार,
d(Q, R) = `sqrtsquare`
∴ d(Q, R) = `sqrt(square - 100)`
d(Q, R) = `sqrtsquare`
∴ d(Q, R) = `sqrtsquare`
(0, 9) हा बिंदू (–4, 1) व (4, 1) या बिंदूंपासून समदूर आहे हे दाखवा.
A(–4, –7), B(–1, 2), C(8, 5) आणि D(5, –4) हे चौकोनाचे शिरोबिंदू असतील, तर चौकोन ABCD हा समभुज चौकोन आहे हे दाखवा.
(0, –1), (8, 3), (6, 7) व (–2, 3) हे बिंदू आयताचे शिरोबिंदू आहेत हे दाखवा.