Advertisements
Advertisements
प्रश्न
खालील बिंदू एकरेषीय आहेत की नाहीत हे ठरवा.
A(1, −3), B(2, −5), C(−4, 7)
उत्तर
A(1, −3), B(2, −5), C(−4, 7)
समजा,
A(1, −3) = A(x1, y1)
B(2, −5) = B(x2, y2)
C(−4, 7) = C(x3, y3)
अंतराच्या सूत्रानुसार,
d(A, B) = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`
= `sqrt((2 - 1)^2 + [-5 - (-3)]^2)`
= `sqrt((1)^2 + (-5 + 3)^2)`
= `sqrt(1^2 + (-2)^2)`
= `sqrt(1 + 4)`
= `sqrt(5)` ...(1)
d(B, C) = `sqrt((x_3 - x_2)^2 + (y_3 - y_2)^2)`
= `sqrt((-4 - 2)^2 + [7 - (-5)]^2)`
= `sqrt((-6)^2 + [7 + 5]^2)`
= `sqrt((-6)^2 + (12)^2)`
= `sqrt(36 + 144)`
= `sqrt180`
= `sqrt(36 × 5)`
= `6sqrt(5)` ...(2)
d(A, C) = `sqrt((x_3 - x_1)^2 + (y_3 - y_1)^2)`
= `sqrt((-4 - 1)^2 + [7 - (-3)]^2)`
= `sqrt((-4 - 1)^2 + (7 + 3)^2)`
= `sqrt((-5)^2 + (10)^2)`
= `sqrt(25 + 100)`
= `sqrt125`
= `sqrt(25 × 5)`
= `5sqrt(5)` ...(3)
(i) आणि (iii) ची बेरीज करून,
∴ d(A, B) + d(A, C) = d(B, C)
∴ `sqrt5 + 5sqrt5 = 6sqrt5` ...(4)
∴ d(A, B) + d(A, C) = d(B, C) ....[(2) आणि (4) वरून]
∴ बिंदू A(1, −3), B(2, −5) आणि C(−4, 7) एकरेषीय आहेत.
संबंधित प्रश्न
खालील बिंदू एकरेषीय आहेत की नाहीत हे ठरवा.
L(-2, 3), M(1, -3), N(5, 4)
खालील बिंदू एकरेषीय आहेत की नाहीत हे ठरवा.
P(-2, 3), Q(1, 2), R(4, 1)
A(1, 2), B(1, 6), C(1 + `2sqrt3` , 4) हे समभुज त्रिकोणाचे शिरोबिंदू आहेत हे दाखवा.
X-अक्षावरील असा बिंदू शोधा की जो P(2,-5) आणि Q(-2,9) पासून समदूर असेल.
खालील बिंदूंतील अंतर काढा.
R(-3a, a), S(a, -2a)
बिंदू Q(3, –7) आणि बिंदू R(3, 3) आहेत, तर बिंदू Q आणि R मधील अंतर किती?
उकल:
समजा, Q(x1, y1) आणि बिंदू R(x2, y2)
x1 = 3, y1 = –7 आणि x2 = 3, y2 = 3
अंतराच्या सूत्रानुसार,
d(Q, R) = `sqrtsquare`
∴ d(Q, R) = `sqrt(square - 100)`
d(Q, R) = `sqrtsquare`
∴ d(Q, R) = `sqrtsquare`
जर बिंदू L(x, 7) आणि M(1, 15) या दोन बिंदूंमधील अंतर 10 असेल, तर x ची किंमत काढा.
C(–3a, a), D(a, –2a) या दोन बिंदूंमधील अंतर काढा.
दाखवा की, बिंदू (11, –2) हा (4, –3) आणि (6, 3) या बिंदूंपासून समदूर आहे.
(0, –1), (8, 3), (6, 7) व (–2, 3) हे बिंदू आयताचे शिरोबिंदू आहेत हे दाखवा.