Advertisements
Advertisements
प्रश्न
खालील बिंदू एकरेषीय आहेत की नाहीत हे ठरवा.
A(1, −3), B(2, −5), C(−4, 7)
उत्तर
A(1, −3), B(2, −5), C(−4, 7)
समजा,
A(1, −3) = A(x1, y1)
B(2, −5) = B(x2, y2)
C(−4, 7) = C(x3, y3)
अंतराच्या सूत्रानुसार,
d(A, B) = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`
= `sqrt((2 - 1)^2 + [-5 - (-3)]^2)`
= `sqrt((1)^2 + (-5 + 3)^2)`
= `sqrt(1^2 + (-2)^2)`
= `sqrt(1 + 4)`
= `sqrt(5)` ...(1)
d(B, C) = `sqrt((x_3 - x_2)^2 + (y_3 - y_2)^2)`
= `sqrt((-4 - 2)^2 + [7 - (-5)]^2)`
= `sqrt((-6)^2 + [7 + 5]^2)`
= `sqrt((-6)^2 + (12)^2)`
= `sqrt(36 + 144)`
= `sqrt180`
= `sqrt(36 × 5)`
= `6sqrt(5)` ...(2)
d(A, C) = `sqrt((x_3 - x_1)^2 + (y_3 - y_1)^2)`
= `sqrt((-4 - 1)^2 + [7 - (-3)]^2)`
= `sqrt((-4 - 1)^2 + (7 + 3)^2)`
= `sqrt((-5)^2 + (10)^2)`
= `sqrt(25 + 100)`
= `sqrt125`
= `sqrt(25 × 5)`
= `5sqrt(5)` ...(3)
(i) आणि (iii) ची बेरीज करून,
∴ d(A, B) + d(A, C) = d(B, C)
∴ `sqrt5 + 5sqrt5 = 6sqrt5` ...(4)
∴ d(A, B) + d(A, C) = d(B, C) ....[(2) आणि (4) वरून]
∴ बिंदू A(1, −3), B(2, −5) आणि C(−4, 7) एकरेषीय आहेत.
संबंधित प्रश्न
एका त्रिकोणाचे शिरोबिंदू A(-3,1), B(0,-2) आणि C(1,3) आहेत, तर त्या त्रिकोणाच्या परिकेंद्राचे निर्देशक काढा.
P(6,-6), Q(3,-7) आणि R(3,3) यांतून जाणाऱ्या वर्तुळाच्या केंद्राचे निर्देशक काढा.
खालील बिंदूंना जोडणारे रेषाखंड त्रिकोण तयार करू शकतील का? त्रिकोण तयार झाल्यास त्याचा बाजूंवरून होणारा प्रकार सांगा.
L(6, 4) , M(-5, -3) , N(-6, 8)
खालील बिंदूंना जोडणारे रेषाखंड त्रिकोण तयार करू शकतील का? त्रिकोण तयार झाल्यास त्याचा बाजूंवरून होणारा प्रकार सांगा.
A(`sqrt2` , `sqrt2`), B(`-sqrt2` , `-sqrt2`), C(`-sqrt6`, `sqrt6`)
बिंदू P(–1, 1) आणि बिंदू Q(5, –7) आहेत. तर बिंदू P आणि Q मधील अंतर ______
बिंदू Q(3, –7) आणि बिंदू R(3, 3) आहेत, तर बिंदू Q आणि R मधील अंतर किती?
उकल:
समजा, Q(x1, y1) आणि बिंदू R(x2, y2)
x1 = 3, y1 = –7 आणि x2 = 3, y2 = 3
अंतराच्या सूत्रानुसार,
d(Q, R) = `sqrtsquare`
∴ d(Q, R) = `sqrt(square - 100)`
d(Q, R) = `sqrtsquare`
∴ d(Q, R) = `sqrtsquare`
C(–3a, a), D(a, –2a) या दोन बिंदूंमधील अंतर काढा.
सोबतच्या आकृतीत, दिलेल्या माहितीवरून त्रिकोणाच्या मध्यगेची लांबी काढण्यासाठी खालील कृती पूर्ण करा.
कृती: A(–1, 1), B(5, –3), C(3, 5) समजा, D(x, y)
मध्यबिंदू सूत्रानुसार,
x = `(5 + 3)/2` ∴ x = `square`
y = `(-3 + 5)/2` ∴ y = `square`
अंतराच्या सूत्रानुसार,
∴ AD = `sqrt((4 - square)^2 + (1 - 1)^2)`
∴ AD = `sqrt((square)^2 + (0)^2)`
∴ AD = `sqrtsquare`
∴ AD = `square`
(2, 0), (–2, 0) आणि (0, 2) हे त्रिकोणाचे शिरोबिंदू आहेत हे दाखवा. तसेच त्या त्रिकोणाचा प्रकार सकारण ठरवा.
A(5, 4), B(–3, –2) आणि C(1, –8) हे ∆ABC चे शिरोबिंदू असून रेख AD मध्यगा असेल, तर रेख AD ची लांबी किती?