Advertisements
Advertisements
प्रश्न
बिंदू P(–1, 1) आणि बिंदू Q(5, –7) आहेत. तर बिंदू P आणि Q मधील अंतर ______
पर्याय
11 सेमी
10 सेमी
5 सेमी
7 सेमी
उत्तर
बिंदू P(–1, 1) आणि बिंदू Q(5, –7) आहेत. तर बिंदू P आणि Q मधील अंतर 10 सेमी.
APPEARS IN
संबंधित प्रश्न
खालील बिंदू एकरेषीय आहेत की नाहीत हे ठरवा.
R(0, 3), D(2, 1), S(3, -1)
A(1, 2), B(1, 6), C(1 + `2sqrt3` , 4) हे समभुज त्रिकोणाचे शिरोबिंदू आहेत हे दाखवा.
X-अक्षावरील असा बिंदू शोधा की जो P(2,-5) आणि Q(-2,9) पासून समदूर असेल.
खालील बिंदूंतील अंतर काढा.
P(-6, -3), Q(-1, 9)
एका त्रिकोणाचे शिरोबिंदू A(-3,1), B(0,-2) आणि C(1,3) आहेत, तर त्या त्रिकोणाच्या परिकेंद्राचे निर्देशक काढा.
खालील बिंदूंना जोडणारे रेषाखंड त्रिकोण तयार करू शकतील का? त्रिकोण तयार झाल्यास त्याचा बाजूंवरून होणारा प्रकार सांगा.
L(6, 4) , M(-5, -3) , N(-6, 8)
खालील बिंदूंना जोडणारे रेषाखंड त्रिकोण तयार करू शकतील का? त्रिकोण तयार झाल्यास त्याचा बाजूंवरून होणारा प्रकार सांगा.
P(-2, -6) , Q(-4, -2), R(-5, 0)
सोबतच्या आकृतीत, दिलेल्या माहितीवरून त्रिकोणाच्या मध्यगेची लांबी काढण्यासाठी खालील कृती पूर्ण करा.
कृती: A(–1, 1), B(5, –3), C(3, 5) समजा, D(x, y)
मध्यबिंदू सूत्रानुसार,
x = `(5 + 3)/2` ∴ x = `square`
y = `(-3 + 5)/2` ∴ y = `square`
अंतराच्या सूत्रानुसार,
∴ AD = `sqrt((4 - square)^2 + (1 - 1)^2)`
∴ AD = `sqrt((square)^2 + (0)^2)`
∴ AD = `sqrtsquare`
∴ AD = `square`
(0, 9) हा बिंदू (–4, 1) व (4, 1) या बिंदूंपासून समदूर आहे हे दाखवा.
(2, 0), (–2, 0) आणि (0, 2) हे त्रिकोणाचे शिरोबिंदू आहेत हे दाखवा. तसेच त्या त्रिकोणाचा प्रकार सकारण ठरवा.