Advertisements
Advertisements
प्रश्न
(0, 9) हा बिंदू (–4, 1) व (4, 1) या बिंदूंपासून समदूर आहे हे दाखवा.
उत्तर
समजा, P(x1, y1) = P(0, 9), Q(x2, y2) = Q(– 4, 1), R(x3, y3) = R(4, 1)
अंतराच्या सूत्रानुसार,
d(P, Q) = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`
= `sqrt([(-4) - 0]^2 + (1 - 9)^2)`
= `sqrt((-4)^2 + (-8)^2)`
= `sqrt(16 + 64)`
= `sqrt80`
= `4sqrt5`
आणि
d(P, R) = `sqrt((x_3 - x_1)^2 + (y_3 - y_1)^2)`
= `sqrt((4 - 0)^2 + (1 - 9)^2)`
= `sqrt(4^2 + (-8)^2)`
= `sqrt(16 + 64)`
= `sqrt80`
= `4sqrt5`
येथे, d(P, Q) = d(P, R)
∴ (0, 9) हा बिंदू (–4, 1) व (4, 1) या बिंदूंपासून समदूर आहे.
APPEARS IN
संबंधित प्रश्न
खालील बिंदू एकरेषीय आहेत की नाहीत हे ठरवा.
P(-2, 3), Q(1, 2), R(4, 1)
X-अक्षावरील असा बिंदू शोधा की जो P(2,-5) आणि Q(-2,9) पासून समदूर असेल.
खालील बिंदूंतील अंतर काढा.
R(-3a, a), S(a, -2a)
खालील बिंदूंना जोडणारे रेषाखंड त्रिकोण तयार करू शकतील का? त्रिकोण तयार झाल्यास त्याचा बाजूंवरून होणारा प्रकार सांगा.
P(-2, -6) , Q(-4, -2), R(-5, 0)
खालील बिंदूंना जोडणारे रेषाखंड त्रिकोण तयार करू शकतील का? त्रिकोण तयार झाल्यास त्याचा बाजूंवरून होणारा प्रकार सांगा.
A(`sqrt2` , `sqrt2`), B(`-sqrt2` , `-sqrt2`), C(`-sqrt6`, `sqrt6`)
A(7, 5) आणि B(2, 5) तर या दोन बिंदूंमधील अंतर किती?
C(–3a, a), D(a, –2a) या दोन बिंदूंमधील अंतर काढा.
दाखवा की, बिंदू (11, –2) हा (4, –3) आणि (6, 3) या बिंदूंपासून समदूर आहे.
A(–4, –7), B(–1, 2), C(8, 5) आणि D(5, –4) हे चौकोनाचे शिरोबिंदू असतील, तर चौकोन ABCD हा समभुज चौकोन आहे हे दाखवा.
O केंद्र असलेल्या वर्तुळाची OA ही त्रिज्या आहे. जर A चे निर्देशक (0, 2) असतील तर बिंदू (1, 2) हा वर्तुळावर आहे किंवा नाही पडताळा घ्या.