Advertisements
Advertisements
प्रश्न
A(1, 2), B(1, 6), C(1 + `2sqrt3` , 4) हे समभुज त्रिकोणाचे शिरोबिंदू आहेत हे दाखवा.
उत्तर
दोन बिंदूंमधील अंतर = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`
अंतराच्या सूत्रानुसार,
AB = `sqrt((1 - 1)^2 + (6 - 2)^2) = sqrt(0^2 + 4^2) = sqrt(4^2) = 4` .....(i)
BC = `sqrt((1 + 2sqrt(3) - 1)^2 + (4 - 6)^2) = sqrt((2sqrt(3))^2 + (-2)^2) = sqrt(12 + 4) = sqrt16 = 4` ......(ii)
AC = `sqrt((1 + 2sqrt(3) - 1)^2 + (4 - 2)^2)`
= `sqrt((2sqrt(3))^2 + 2^2) = sqrt(12 + 4)`
= `sqrt16 = 4` .....(iii)
∴ AB = BC = AC ......[(i), (ii) आणि (iii) वरून]
∴ ΔABC हा समभुज त्रिकोण असतो.
∴ बिंदू A, B व C हे समभुज त्रिकोणाचे शिरोबिंदू आहेत.
संबंधित प्रश्न
खालील बिंदूंतील अंतर काढा.
A(a, 0), B(0, a)
खालील बिंदूंतील अंतर काढा.
P(-6, -3), Q(-1, 9)
P(6,-6), Q(3,-7) आणि R(3,3) यांतून जाणाऱ्या वर्तुळाच्या केंद्राचे निर्देशक काढा.
जर P(2,1), Q(-1,3), R(-5,-3) आणि S(-2,-5) तर `square`PQRS हा आयत आहे हे दाखवा.
खालील बिंदूंना जोडणारे रेषाखंड त्रिकोण तयार करू शकतील का? त्रिकोण तयार झाल्यास त्याचा बाजूंवरून होणारा प्रकार सांगा.
L(6, 4) , M(-5, -3) , N(-6, 8)
A(0, 0), B(–5, 12) या दोन बिंदूंमधील अंतर किती?
दाखवा की, बिंदू (11, –2) हा (4, –3) आणि (6, 3) या बिंदूंपासून समदूर आहे.
(0, 9) हा बिंदू (–4, 1) व (4, 1) या बिंदूंपासून समदूर आहे हे दाखवा.
(0, –1), (8, 3), (6, 7) व (–2, 3) हे बिंदू आयताचे शिरोबिंदू आहेत हे दाखवा.
(2, 0), (–2, 0) आणि (0, 2) हे त्रिकोणाचे शिरोबिंदू आहेत हे दाखवा. तसेच त्या त्रिकोणाचा प्रकार सकारण ठरवा.