मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (मराठी माध्यम) इयत्ता १० वी

खालील बिंदूंना जोडणारे रेषाखंड त्रिकोण तयार करू शकतील का? त्रिकोण तयार झाल्यास त्याचा बाजूंवरून होणारा प्रकार सांगा. L(6, 4) , M(-5, -3) , N(-6, 8) - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

प्रश्न

खालील बिंदूंना जोडणारे रेषाखंड त्रिकोण तयार करू शकतील का? त्रिकोण तयार झाल्यास त्याचा बाजूंवरून होणारा प्रकार सांगा.

L(6, 4) , M(-5, -3) , N(-6, 8) 

बेरीज

उत्तर

अंतराच्या सूत्रानुसार,

d(L, M) = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`

= `sqrt((-5 - 6)^2 + (-3 - 4)^2)`

= `sqrt((-11)^2 + (-7)^2)`

= `sqrt(121 + 49)`

∴ d(L, M) = `sqrt170`  .....(i)

d(M, N) = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`

= `sqrt([-6 - (-5)]^2 + [8 - (-3)]^2)`

= `sqrt((-6 + 5)^2 + (8 + 3)^2)`

= `sqrt((-1)^2 + 11^2) = sqrt(1 + 121)`

∴ d(M, N) = `sqrt122`  .....(ii)

d(L, N) = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`

= `sqrt((-6-6)^2 + (8 - 4)^2)`

= `sqrt((-12)^2 + (4)^2) = sqrt(144 + 16)`

∴ d(L, N) = `sqrt160` .....(iii)

(ii) आणि (iii) मिळवले असता

d(M, N) + d(L, N) = `sqrt122` + `sqrt160`

`sqrt122` + `sqrt160` > `sqrt170`

∴ d(M, N) + d(L, N) > d(L, M)

∴ बिंदू L, M आणि N हे एकरेषीय बिंदू नाहीत.

तीन नैकरेषीय बिंदूंमधून त्रिकोण तयार करता येतो.

∴ दिलेल्या बिंदूंना जोडणाऱ्या रेषाखंडांपासून त्रिकोण तयार होतो.

तसेच, MN ≠ LN ≠ LM

∴ ΔLMN हा विषमभुज त्रिकोण आहे.

∴ बिंदू L, M आणि N यांना जोडणारे रेषाखंड विषमभुज त्रिकोण तयार करतील.

shaalaa.com
अंतराचे सूत्र (Distance Formula)
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: निर्देशक भूमिती - संकीर्ण प्रश्नसंग्रह 5 [पृष्ठ १२३]

APPEARS IN

बालभारती Geometry (Mathematics 2) [Marathi] 10 Standard SSC Maharashtra State Board
पाठ 5 निर्देशक भूमिती
संकीर्ण प्रश्नसंग्रह 5 | Q 8. (1) | पृष्ठ १२३

संबंधित प्रश्‍न

खालील बिंदू एकरेषीय आहेत की नाहीत हे ठरवा.

R(0, 3), D(2, 1), S(3, -1)


X-अक्षावरील असा बिंदू शोधा की जो P(2,-5) आणि Q(-2,9) पासून समदूर असेल.


P(6,-6), Q(3,-7) आणि R(3,3) यांतून जाणाऱ्या वर्तुळाच्या केंद्राचे निर्देशक काढा. 


खालील बिंदूंना जोडणारे रेषाखंड त्रिकोण तयार करू शकतील का? त्रिकोण तयार झाल्यास त्याचा बाजूंवरून होणारा प्रकार सांगा.

A(`sqrt2` , `sqrt2`), B(`-sqrt2` , `-sqrt2`), C(`-sqrt6`, `sqrt6`)


बिंदू P(–1, 1) आणि बिंदू Q(5, –7) आहेत. तर बिंदू P आणि Q मधील अंतर ______ 


A(0, 0), B(–5, 12) या दोन बिंदूंमधील अंतर किती? 


C(–3a, a), D(a, –2a) या दोन बिंदूंमधील अंतर काढा.


सोबतच्या आकृतीत, दिलेल्या माहितीवरून त्रिकोणाच्या मध्यगेची लांबी काढण्यासाठी खालील कृती पूर्ण करा.

कृती: A(–1, 1), B(5, –3), C(3, 5) समजा, D(x, y)

मध्यबिंदू सूत्रानुसार,

x = `(5 + 3)/2` ∴ x = `square`

y = `(-3 + 5)/2` ∴ y = `square`

अंतराच्या सूत्रानुसार,

∴ AD = `sqrt((4 - square)^2 + (1 - 1)^2)`

∴ AD = `sqrt((square)^2 + (0)^2)`

∴ AD = `sqrtsquare`

∴ AD = `square`


(0, 9) हा बिंदू (–4, 1) व (4, 1) या बिंदूंपासून समदूर आहे हे दाखवा. 


O(0, 0) आणि P(3, 4) या दोन बिंदूतील अंतर काढा.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×