Advertisements
Advertisements
Question
खालील बिंदूंना जोडणारे रेषाखंड त्रिकोण तयार करू शकतील का? त्रिकोण तयार झाल्यास त्याचा बाजूंवरून होणारा प्रकार सांगा.
L(6, 4) , M(-5, -3) , N(-6, 8)
Solution
अंतराच्या सूत्रानुसार,
d(L, M) = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`
= `sqrt((-5 - 6)^2 + (-3 - 4)^2)`
= `sqrt((-11)^2 + (-7)^2)`
= `sqrt(121 + 49)`
∴ d(L, M) = `sqrt170` .....(i)
d(M, N) = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`
= `sqrt([-6 - (-5)]^2 + [8 - (-3)]^2)`
= `sqrt((-6 + 5)^2 + (8 + 3)^2)`
= `sqrt((-1)^2 + 11^2) = sqrt(1 + 121)`
∴ d(M, N) = `sqrt122` .....(ii)
d(L, N) = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`
= `sqrt((-6-6)^2 + (8 - 4)^2)`
= `sqrt((-12)^2 + (4)^2) = sqrt(144 + 16)`
∴ d(L, N) = `sqrt160` .....(iii)
(ii) आणि (iii) मिळवले असता
d(M, N) + d(L, N) = `sqrt122` + `sqrt160`
`sqrt122` + `sqrt160` > `sqrt170`
∴ d(M, N) + d(L, N) > d(L, M)
∴ बिंदू L, M आणि N हे एकरेषीय बिंदू नाहीत.
तीन नैकरेषीय बिंदूंमधून त्रिकोण तयार करता येतो.
∴ दिलेल्या बिंदूंना जोडणाऱ्या रेषाखंडांपासून त्रिकोण तयार होतो.
तसेच, MN ≠ LN ≠ LM
∴ ΔLMN हा विषमभुज त्रिकोण आहे.
∴ बिंदू L, M आणि N यांना जोडणारे रेषाखंड विषमभुज त्रिकोण तयार करतील.
APPEARS IN
RELATED QUESTIONS
खालील बिंदू एकरेषीय आहेत की नाहीत हे ठरवा.
A(1, −3), B(2, −5), C(−4, 7)
खालील बिंदू एकरेषीय आहेत की नाहीत हे ठरवा.
P(-2, 3), Q(1, 2), R(4, 1)
जर बिंदू L(x, 7) आणि M(1, 15) यातील अंतर 10 असेल, तर x ची किंमत काढा.
खालील बिंदूंतील अंतर काढा.
R(-3a, a), S(a, -2a)
जर P(2,1), Q(-1,3), R(-5,-3) आणि S(-2,-5) तर `square`PQRS हा आयत आहे हे दाखवा.
खालील बिंदूंना जोडणारे रेषाखंड त्रिकोण तयार करू शकतील का? त्रिकोण तयार झाल्यास त्याचा बाजूंवरून होणारा प्रकार सांगा.
P(-2, -6) , Q(-4, -2), R(-5, 0)
खालील बिंदूंना जोडणारे रेषाखंड त्रिकोण तयार करू शकतील का? त्रिकोण तयार झाल्यास त्याचा बाजूंवरून होणारा प्रकार सांगा.
A(`sqrt2` , `sqrt2`), B(`-sqrt2` , `-sqrt2`), C(`-sqrt6`, `sqrt6`)
A(7, 5) आणि B(2, 5) तर या दोन बिंदूंमधील अंतर किती?
दाखवा की, बिंदू (11, –2) हा (4, –3) आणि (6, 3) या बिंदूंपासून समदूर आहे.
A(–4, –7), B(–1, 2), C(8, 5) आणि D(5, –4) हे चौकोनाचे शिरोबिंदू असतील, तर चौकोन ABCD हा समभुज चौकोन आहे हे दाखवा.