Advertisements
Advertisements
प्रश्न
खालील बिंदू एकरेषीय आहेत की नाहीत हे ठरवा.
R(0, 3), D(2, 1), S(3, -1)
उत्तर
अंतराच्या सूत्रानुसार,
d(R, D) = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`
= `sqrt((2 - 0)^2 + (1 - 3)^2)`
= `sqrt(2^2 + (-2)^2)`
= `sqrt(4 + 4)`
∴ d(R, D) = `sqrt8` ....................(i)
d(D, S) = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`
= `sqrt((3 - 2)^2 + (-1 - 1)^2)`
= `sqrt(1^2 + (-2)^2` = `sqrt(1 + 4)`
d(D, S) = `sqrt(5)` ....................(ii)
d(R, S) = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`
= `sqrt((3 - 0)^2 + (-1 - 3)^2)`
= `sqrt(3^2 + (-4^2)`
= `sqrt(9 + 16)`
∴ d(R, S) = `sqrt25 = 5` ....................(iii)
(i) आणि (ii) ची बेरीज करून,
d(R, D) + d(D, S) = `sqrt8 + sqrt5 ≠ sqrt5`
∴ d(R, D) + d(D, S) ≠ d(R, S) .......[(iii) वरून]
∴ बिंदू R, D आणि S एकरेषीय आहेत.
APPEARS IN
संबंधित प्रश्न
खालील बिंदू एकरेषीय आहेत की नाहीत हे ठरवा.
A(1, −3), B(2, −5), C(−4, 7)
X - अक्षावरील असा बिंदू शोधा की जो बिंदू A(-3, 4) आणि B(1, -4) यांच्यापासून समदूर आहे.
A(1, 2), B(1, 6), C(1 + `2sqrt3` , 4) हे समभुज त्रिकोणाचे शिरोबिंदू आहेत हे दाखवा.
खालील बिंदूंतील अंतर काढा.
A(a, 0), B(0, a)
एका त्रिकोणाचे शिरोबिंदू A(-3,1), B(0,-2) आणि C(1,3) आहेत, तर त्या त्रिकोणाच्या परिकेंद्राचे निर्देशक काढा.
जर P(2,1), Q(-1,3), R(-5,-3) आणि S(-2,-5) तर `square`PQRS हा आयत आहे हे दाखवा.
खालील बिंदूंना जोडणारे रेषाखंड त्रिकोण तयार करू शकतील का? त्रिकोण तयार झाल्यास त्याचा बाजूंवरून होणारा प्रकार सांगा.
L(6, 4) , M(-5, -3) , N(-6, 8)
खालील बिंदूंना जोडणारे रेषाखंड त्रिकोण तयार करू शकतील का? त्रिकोण तयार झाल्यास त्याचा बाजूंवरून होणारा प्रकार सांगा.
A(`sqrt2` , `sqrt2`), B(`-sqrt2` , `-sqrt2`), C(`-sqrt6`, `sqrt6`)
बिंदू A(–3, 4) आणि आरंभबिंदू O यांमधील अंतर काढा.
(0, –1), (8, 3), (6, 7) व (–2, 3) हे बिंदू आयताचे शिरोबिंदू आहेत हे दाखवा.