Advertisements
Advertisements
प्रश्न
X - अक्षावरील असा बिंदू शोधा की जो बिंदू A(-3, 4) आणि B(1, -4) यांच्यापासून समदूर आहे.
उत्तर
समजा, X–अक्षावरील बिंदू C हा बिंदू A व B पासून समदूर आहे.
बिंदू C हा X-अक्षावर आहे.
∴ त्याचा y निर्देशक 0 आहे.
समजा, C = (x, 0) आहे.
C हा बिंदू A आणि B बिंदूंपासून समदूर आहे.
∴ AC = BC
∴`sqrt([x - (-3)]^2 + (0 - 4)^2) = sqrt((x - 1)^2 + [0 - (-4)]^2)` ...........[अंतराच्या सूत्रानुसार]
∴ `[x - (-3)]^2 + (0 - 4)^2 = (x - 1)^2 + [0 - (-4)]^2` .......[दोन्ही बाजूंचे वर्ग करून]
∴ (x + 3)2 + (–4)2 = (x – 1)2 + 42
∴ x2 + 6x + 9 + 16 = x2 – 2x + 1 + 16
∴ 8x = -8
∴ x = `-8/8 = -1`
∴ A आणि B या बिंदूंपासून समदूर असणाऱ्या X–अक्षावरील बिंदूचे निर्देशक (–1, 0) आहेत.
APPEARS IN
संबंधित प्रश्न
जर बिंदू L(x, 7) आणि M(1, 15) यातील अंतर 10 असेल, तर x ची किंमत काढा.
X-अक्षावरील असा बिंदू शोधा की जो P(2,-5) आणि Q(-2,9) पासून समदूर असेल.
खालील बिंदूंतील अंतर काढा.
A(a, 0), B(0, a)
P(6,-6), Q(3,-7) आणि R(3,3) यांतून जाणाऱ्या वर्तुळाच्या केंद्राचे निर्देशक काढा.
A(7, 1), B(3, 5) आणि C(2, 0) शिरोबिंदू असलेल्या त्रिकोणाच्या परिवर्तुळाच्या केंद्राचे निर्देशक आणि परिवर्तुळाची त्रिज्या काढा.
A(4, -1), B(6, 0), C(7, -2) आणि D(5, -3) हे चौरसाचे शिरोबिंदू आहेत हे दाखवा.
खालील बिंदूंना जोडणारे रेषाखंड त्रिकोण तयार करू शकतील का? त्रिकोण तयार झाल्यास त्याचा बाजूंवरून होणारा प्रकार सांगा.
A(`sqrt2` , `sqrt2`), B(`-sqrt2` , `-sqrt2`), C(`-sqrt6`, `sqrt6`)
A(7, 5) आणि B(2, 5) तर या दोन बिंदूंमधील अंतर किती?
बिंदू Q(3, –7) आणि बिंदू R(3, 3) आहेत, तर बिंदू Q आणि R मधील अंतर किती?
उकल:
समजा, Q(x1, y1) आणि बिंदू R(x2, y2)
x1 = 3, y1 = –7 आणि x2 = 3, y2 = 3
अंतराच्या सूत्रानुसार,
d(Q, R) = `sqrtsquare`
∴ d(Q, R) = `sqrt(square - 100)`
d(Q, R) = `sqrtsquare`
∴ d(Q, R) = `sqrtsquare`
सोबतच्या आकृतीत, दिलेल्या माहितीवरून त्रिकोणाच्या मध्यगेची लांबी काढण्यासाठी खालील कृती पूर्ण करा.
कृती: A(–1, 1), B(5, –3), C(3, 5) समजा, D(x, y)
मध्यबिंदू सूत्रानुसार,
x = `(5 + 3)/2` ∴ x = `square`
y = `(-3 + 5)/2` ∴ y = `square`
अंतराच्या सूत्रानुसार,
∴ AD = `sqrt((4 - square)^2 + (1 - 1)^2)`
∴ AD = `sqrt((square)^2 + (0)^2)`
∴ AD = `sqrtsquare`
∴ AD = `square`