Advertisements
Advertisements
प्रश्न
A(4, -1), B(6, 0), C(7, -2) आणि D(5, -3) हे चौरसाचे शिरोबिंदू आहेत हे दाखवा.
उत्तर
अंतराच्या सूत्रानुसार,
d(A, B) = `sqrt((6 - 4)^2 + [0 - (-1)]^2)`
= `sqrt(2^2 + (0 + 1)^2)`
= `sqrt(4 + 1) = sqrt5` .......(i)
d(B, C) = `sqrt((7 - 6)^2 + (-2 - 0)^2)`
= `sqrt(1^2 + (-2)^2)`
= `sqrt(1 + 4) = sqrt5` .......(ii)
d(C, D) = `sqrt((5 - 7)^2 + [-3 - (-2)]^2)`
= `sqrt((-2)^2 + (-3 + 2)^2)`
= `sqrt((-2)^2 + (-1)^2)`
= `sqrt(4 + 1) = sqrt5` .......(iii)
d(A, D) = `sqrt((5 - 4)^2 + [-3 - (-1)]^2)`
= `sqrt(1^2 + (-3 + 1)^2)`
= `sqrt(1 + (-2)^2)`
= `sqrt(1 + 4) = sqrt5` .......(iv)
∴ AB = BC = CD = AD .....…[(i), (ii), (iii) आणि (iv) वरून]
∴ `square"ABCD"` हा समभुज चौकोन आहे.
d(A, C) = `sqrt((7 - 4)^2 + [-2 - (-1)]^2)`
= `sqrt(3^2 + (-2 + 1)^2)`
= `sqrt(3^2 + (-1)^2)`
= `sqrt(9 + 1) = sqrt10` .......(v)
d(B, D) = `sqrt((5 - 6)^2 + (-3 - 0)^2)`
= `sqrt((-1)^2 + (-3)^2)`
= `sqrt(1 + 9) = sqrt10` .......(vi)
`square"ABCD"` मध्ये,
AC = BD .....[(v) आणि (vi) वरून]
∴ `square"ABCD"` हा चौरस आहे.
[समभुज चौकोनामध्ये, दोन्ही कर्ण समान लांबीचे असतील, तर तो चौकोन चौरस असतो.]
APPEARS IN
संबंधित प्रश्न
खालील बिंदू एकरेषीय आहेत की नाहीत हे ठरवा.
L(-2, 3), M(1, -3), N(5, 4)
खालील बिंदू एकरेषीय आहेत की नाहीत हे ठरवा.
R(0, 3), D(2, 1), S(3, -1)
X - अक्षावरील असा बिंदू शोधा की जो बिंदू A(-3, 4) आणि B(1, -4) यांच्यापासून समदूर आहे.
जर बिंदू L(x, 7) आणि M(1, 15) यातील अंतर 10 असेल, तर x ची किंमत काढा.
X-अक्षावरील असा बिंदू शोधा की जो P(2,-5) आणि Q(-2,9) पासून समदूर असेल.
एका त्रिकोणाचे शिरोबिंदू A(-3,1), B(0,-2) आणि C(1,3) आहेत, तर त्या त्रिकोणाच्या परिकेंद्राचे निर्देशक काढा.
A(0, 0), B(–5, 12) या दोन बिंदूंमधील अंतर किती?
जर बिंदू L(x, 7) आणि M(1, 15) या दोन बिंदूंमधील अंतर 10 असेल, तर x ची किंमत काढा.
सोबतच्या आकृतीत, दिलेल्या माहितीवरून त्रिकोणाच्या मध्यगेची लांबी काढण्यासाठी खालील कृती पूर्ण करा.
कृती: A(–1, 1), B(5, –3), C(3, 5) समजा, D(x, y)
मध्यबिंदू सूत्रानुसार,
x = `(5 + 3)/2` ∴ x = `square`
y = `(-3 + 5)/2` ∴ y = `square`
अंतराच्या सूत्रानुसार,
∴ AD = `sqrt((4 - square)^2 + (1 - 1)^2)`
∴ AD = `sqrt((square)^2 + (0)^2)`
∴ AD = `sqrtsquare`
∴ AD = `square`
(0, 9) हा बिंदू (–4, 1) व (4, 1) या बिंदूंपासून समदूर आहे हे दाखवा.