Advertisements
Advertisements
प्रश्न
Lines `overliner = (hati + hatj - hatk) + λ(2hati - 2hatj + hatk)` and `overliner = (4hati - 3hatj + 2hatk) + μ(hati - 2hatj + 2hatk)` are coplanar. Find the equation of the plane determined by them.
उत्तर
Lines `overliner = overlinea_1 + λ_1overlineb_1` and `overliner = overlinea_2 + λ_2overlineb_2` are coplanar if and only if `(overlinea_2 - overlinea_1) . (overlineb_1 xx overlineb_2)` = 0
Here `overlinea_1 = hati + hatj - hatk, overlinea_2 = 4hati - 3hatj + 2hatk`
`overlineb_1 = 2hati - 2hatj + hatk, overlineb_2 = hati - 2hatj + 2hatk`
∴ `overlinea_2 - overlinea_1 = 3hati - 4hatj + 3hatk`
`(overlinea_2 - overlinea_1) . (overlineb_1 xx overlineb_2) = |(3, -4, 3),(2, -2, 1),(1, -2, 2)|`
= 3(–2) + 4(3) + 3(–2)
= –6 + 12 – 6
= 0
∴ Given lines are coplanar.
Now `overlineb_1 xx overlineb_2 = |(hati, hatj, hatk),(2, -2, 1),(1, -2, 2)|`
`overlineb_1 xx overlineb_2 = -2hati - 3hatj - 2hatk`
The equation of the plane determined by them is `(overliner - overlinea_1).(overlineb_1 xx overlineb_2)` = 0
∴ `overliner.(overlineb_1 xx overlineb_2) = overlinea_1.(overlineb_1 xx overlineb_2)`
∴ `overliner.(-2hati - 3hatj - 2hatk) = (hati + hatj - hatk).(-2hati - 3hatj - 2hatk)`
∴ `overliner.(-2hati - 3hatj - 2hatk)` = – 3
∴ `overliner.(2hati + 3hatj + 2hatk)` = 3
APPEARS IN
संबंधित प्रश्न
Show that the lines ` (x+1)/-3=(y-3)/2=(z+2)/1; ` are coplanar. Find the equation of the plane containing them.
Show that four points A, B, C and D whose position vectors are
`4hati+5hatj+hatk,-hatj-hatk-hatk, 3hati+9hatj+4hatk and 4(-hati+hatj+hatk)` respectively are coplanar.
The lines `(x - 2)/(1) = (y - 3)/(1) = (z - 4)/(-k) and (x - 1)/k = (y - 4)/(2) = (z - 5)/(1)` are coplnar if ______.
If the origin and the points P(2, -7, 5), Q(2, 3, - 5) and R(x, y, z) are co-planar, then ______
Show that the lines: `(1 - x)/2 = (y - 3)/4 = z/(-1)` and `(x - 4)/3 = (2y - 2)/(-4) = z - 1` are coplanar.
If lines `(x - 1)/2 = (y + 1)/3 = (z - 1)/4` and x – 3 = `(y - k)/2` = z intersect then the value of k is ______.
If the origin and the points P(2, 3, 4), Q(1, 2, 3) and R(x, y, z) are coplanar, then ______.
If the straight lines `(x - 1)/2 = (y + 1)/k = z/2` and `(x + 1)/5 = (y + 1)/2 = z/k` are coplanar, then the plane(s) containing these two lines is/are ______.