हिंदी

Lines λr¯=(i^+j^-k^)+λ(2i^-2j^+k^) and μr¯=(4i^-3j^+2k^)+μ(i^-2j^+2k^) are coplanar. Find the equation of the plane determined by them. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Lines `overliner = (hati + hatj - hatk) + λ(2hati - 2hatj + hatk)` and `overliner = (4hati - 3hatj + 2hatk) + μ(hati - 2hatj + 2hatk)` are coplanar. Find the equation of the plane determined by them.

योग

उत्तर

Lines `overliner = overlinea_1 + λ_1overlineb_1` and `overliner = overlinea_2 + λ_2overlineb_2` are coplanar if and only if `(overlinea_2 - overlinea_1) . (overlineb_1 xx overlineb_2)` = 0

Here `overlinea_1 = hati + hatj - hatk, overlinea_2 = 4hati - 3hatj + 2hatk`

`overlineb_1 = 2hati - 2hatj + hatk, overlineb_2 = hati - 2hatj + 2hatk`

∴ `overlinea_2 - overlinea_1 = 3hati - 4hatj + 3hatk`

 `(overlinea_2 - overlinea_1) . (overlineb_1 xx overlineb_2) = |(3, -4, 3),(2, -2, 1),(1, -2, 2)|`

= 3(–2) + 4(3) + 3(–2)

= –6 + 12 – 6

= 0

∴ Given lines are coplanar.

Now `overlineb_1 xx overlineb_2 = |(hati, hatj, hatk),(2, -2, 1),(1, -2, 2)|`

`overlineb_1 xx overlineb_2 = -2hati - 3hatj - 2hatk`

The equation of the plane determined by them is `(overliner - overlinea_1).(overlineb_1 xx  overlineb_2)` = 0

∴ `overliner.(overlineb_1 xx overlineb_2) = overlinea_1.(overlineb_1 xx overlineb_2)`

∴ `overliner.(-2hati - 3hatj - 2hatk) = (hati + hatj - hatk).(-2hati - 3hatj - 2hatk)`

∴ `overliner.(-2hati - 3hatj - 2hatk)` = – 3

∴ `overliner.(2hati + 3hatj + 2hatk)` = 3

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Official

वीडियो ट्यूटोरियलVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×