Advertisements
Advertisements
प्रश्न
मान लीजिए कि 90% लोग दाहिने हाथ से काम करने वाले हैं। इसकी प्रायिकता क्या है कि 10 लोगों में से यादृच्छया चुने गए अधिक से अधिक 6 लोग दाहिने हाथ से काम करने वाले हों?
उत्तर
मान लीजिए p उन लोगों की सफलता की संभावना है जो दाएं हाथ से काम करते हैं।
⇒ `p = 90/100 = 9/10`
तथा `q = 1 - p = 1 - 9/10 = 1/10`
∴ X का द्विपद वितरण है।
`n = 10, p = 9/10, q = 1/10`
∴ P (X = r) = nCr (q)n-r pr
अपेक्षित प्रायिकता = P(अधिकतम 10 में से 6 व्यक्ति दाएं हाथ के हैं।)
= P (X ≤ 6) = 1 - P (7 ≤ X ≤ 10)
`= 1 - sum_(r =17)^10 ""^10C_r (9/10)^r (1/10)^(10-r)`
`= 1- sum_(r=7)^10 ""^10C_r (0.9)^r (0.1)^(10-r)`
APPEARS IN
संबंधित प्रश्न
यदि E और F इस प्रकार की घटनाएँ हैं कि P(E) = 0.6, P(F) = 0.3 और P(E ∩ F) = 0.2, तो P(E|F) और P(F|E) ज्ञात कीजिए।
P(A|B) ज्ञात कीजिए, यदि P(B) = 0.5 और P(A ∩ B) = 0.32
यदि P(A) = 0.8, P(B) = 0.5 और P(B|A) = 0.4 ज्ञात कीजिए |
P(A|B)
यदि P(A) = 0.8, P(B) = 0.5 और P(B|A) = 0.4 ज्ञात कीजिए |
P(A ∪ B)
P(A ∪ B) ज्ञात कीजिए यदि 2P(A) = P(B) = `5/13` और P(A|B) = `2/5`
यदि P(A) = `6/11`, P(B) = `5/11` और P(A ∪ B) = `7/11` तो ज्ञात कीजिए।
- P(A ∩ B)
- P(A|B)
- P(B|A)
यदि P(A) = `6/11`, P(B) = `5/11` और P(A ∪ B) = `7/11` तो ज्ञात कीजिए |
P(A|B)
यदि P(A) = `6/11`, P(B) = `5/11` और P(A ∪ B) = `7/11` तो ज्ञात कीजिए |
P(B|A)
निम्नलिखित प्रश्न में P(E|F) ज्ञात कीजिए।
एक सिक्के को तीन बार उछाला गया है:
E: अधिकतम दो पट F: न्यूनतम दो पट
एक काले और एक लाल पासे को उछाला गया है:
पासों पर प्राप्त संख्याओं का योग 8 होने की सप्रतिबंध प्रायिकता ज्ञात कीजिए यदि यह ज्ञात हो कि लाल पासे पर 4 से कम है।
एक न्याय्य पासे को उछाला गया है। घटनाओं E = {1, 3, 5}, F = {2, 3}, और G = {2, 3, 4, 5} के लिए निम्नलिखित ज्ञात कीजिए:
P(E|G) और P(G|E)
एक न्याय्य पासे को उछाला गया है। घटनाओं E = {1, 3, 5}, F = {2, 3}, और G = {2, 3, 4, 5} के लिए निम्नलिखित ज्ञात कीजिए:
P(E ∪ F|G) और P(E ∩ F|G)
मान लें कि जन्म लेने वाले बच्चे को लड़का या लड़की होना समसंभाव्य है। यदि किसी परिवार में दो बच्चे हैं, तो दोनों बच्चों के लड़की होने की सप्रतिबंध प्रायिकता क्या है? यदि यह दिया गया है कि
- सबसे छोटा बच्चा लड़की है।
- न्यूनतम एक बच्चा लड़की है।
एक प्रशिक्षक के पास 300 सत्य/असत्य प्रकार के आसान प्रश्न 200 सत्य/असत्य प्रकार के कठिन प्रश्न, 500 बहु-विकल्पीय प्रकार के आसान प्रश्न और 400 बहु-विकल्पीय प्रकार के कठिन प्रश्नों का संग्रह है। यदि प्रश्नों के संग्रह से एक प्रश्न यादृच्छया चुना जाता है, तो एक आसान प्रश्न की बहु-विकल्पीय होने की प्रायिकता क्या होगी?
A और B इस प्रकार घटनाएँ हैं कि P(A) ≠ 0. P(B|A) ज्ञात कीजिए यदि A ∩ B = Φ
एक दंपति के दो बच्चे हैं, दोनों बच्चों के लड़की होने की प्रायिकता ज्ञात कीजिए यदि यह ज्ञात है कि बड़ा बच्चा लड़की है।
एक बाधा दौड़ में एक प्रतियोगी को 10 बाधाएँ पार करनी है इसकी प्रायिकता कि वह प्रत्येक बाधा को पार कर लेगा `5/6` है। इसकी क्या प्रायिकता है कि वह 2 से कम बाधाओं को गिरा देगा (नहीं पार कर पाएगा)?
एक इलेक्ट्रॉनिक एसेंबली के दो सहायक निकाय A और B हैं। पूर्ववर्ती निरीक्षण द्वारा निम्न प्रायिकताएँ ज्ञात है:
P(A के असफल होने की) = 0.2
P(B के अकेले असफल होने की) = 0.15
P(A और B के असफल होने की) = 0.15
तो, निम्न प्रायिकताएँ ज्ञात कीजिए:
- P(A असफल/B असफल हो चुकी हो)
- P(A के अकेले असफल होने की)
यदि A और B दो ऐसी घटनाएँ हैं कि P(A) ≠ 0 और `P(B|A)` = 1, तब ______.
यदि `P(A|B) > P(A)`, तब निम्न में से कौन सही है।
निम्नलिखित प्रश्न में P(E|F) ज्ञात कीजिए।
एक सिक्के को तीन बार उछाला गया है:
E: तीसरी उछाल पर चित्त, F: पहली दोनों उछालों पर चित्त
निम्नलिखित प्रश्न में P(E|F) ज्ञात कीजिए।
दो सिक्कों को एक बार उछाला गया है:
E: एक सिक्के पर पट प्रकट होता है, F: एक सिक्के पर चित प्रकट होता है