Advertisements
Advertisements
प्रश्न
मान लीजिए कि f : R → R, f (x) = x2 + 1 द्वारा परिभषित हैं, तो 17 तथा -3 के पूर्व प्रतिबिम्ब क्रमश:
विकल्प
φ, {4, – 4}
{3, – 3}, φ
{4, – 4}, φ
{4, – 4, {2, – 2}
उत्तर
सही विकल्प - {4, – 4}, φ
क्योंकि
f–1(17) = x
⇒ f(x) = 17 या x2 + 1 = 17
⇒ x = ± 4 या f–1(17)
= {4, – 4} तथा f–1(–3) = x के लिए
⇒ f(x) = – 3
⇒ x2 + 1 = – 3
⇒ x2 = – 4 अत: f–1(– 3) = φ
APPEARS IN
संबंधित प्रश्न
यदि f(x) = x2 तो `(f(1.1) - f(1))/((1.1 - 1))` ज्ञात कीजिए।
फलन f(x) = f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)` का प्रांत ज्ञात कीजिए।
मान लीजिए कि f : R → R है तब निम्नलिखित प्रकार से परिभाषित चिन्ह फलन (Signum Function) है |
f(x) = `{(1"," x > 0), (0"," x = 0),(-1"," x < 0):}`
तथा g : R → R, g(x) = [x], द्वारा प्रदत्त महत्तम पूर्णांक फलन है, जहाँ [x], x से कम या x के बराबर पूर्णांक है, तो क्या fog तथा gof, अंतराल [0, 1] में संपाती (coincide) हैं?
समुच्चय A = {1, 2, 3}, के लिए एक संबंध निचे लिखे अनुसार परिभाषित कीजिए:
R = {(1, 1), (2, 2), (3, 3), (1, 3)}
उन क्रमित युग्मों को लिखिए जिनको R में जोड़ने से वह न्यूनतम (छोटे से छोटा) तुल्यता संबंध बन जाए।
यदि f = {(5, 2), (6, 3)} तथा g = {(2, 5), (3, 6)}, तो f तथा g के परिसर लिखिए।
सिद्ध कीजिए कि f(x) = `x/(x^2 + 1)`, ∀ ∈ + R, द्वारा परिभाषित फलन f : R → R न तो एकैकी है और न आच्छादी है।
मान लीजिए कि Q में परिभाषित * एक द्वि- आधारी संक्रिया है। ज्ञात कीजिए कि निम्नलिखित में से कौन-सा द्विआधारी संक्रिया साहचर्य है:
a, b ∈ Q के लिए a * b = a – b + ab
मान लीजिए कि Q में परिभाषित * एक द्वि- आधारी संक्रिया है। ज्ञात कीजिए कि निम्नलिखित में से कौन-सा द्विआधारी संक्रिया साहचर्य है:
a, b ∈ Q के लिए a * b = ab2
मान लीजिए कि N प्राकृत संख्याओं के समुच्चय है तथा f : N → N, f (n) = 2n + 3 ∀ n ∈ N द्वारा परिभाषित एक फलन है, तो f
मान लीजिए कि f : R → R, f (x) = sin x तथा g : R → R g (x) = x2 द्वारा परिभषित हैं, तो f o g
मान लीजिए कि f: R → R, f(x) = 3x – 4, द्वारा परिभषित हैं, तो f–1(x)
मान लीजिए C सम्मिश्र संख्याओं का समुच्चय है। सिद्ध कीजिए कि f(z) = |z|, z C द्वारा दिया गया प्रतिचित्रण f: C → R न तो एकैकी है और न ही आच्छादक (आच्छादि) है।
मान लीजिए फलन f: R → R, f(x) = cosx, ∀ x ∈ R द्वारा परिभाषित है। सिद्ध कीजिए कि f न तो एकैकी है और न ही आच्छादक (आच्छादि) है।
यदि फलन f: A → B तथा g: B → A, g o f = IA को संतुष्ट करता हैं, तो सिद्ध कीजिए कि f एकैक है तथा g आच्छादक है।
यदि A = {1, 2, 3, 4}, तो A में निम्लिखित गुण वाले संबंध को परिभाषित कीजिए:
स्वतुल्य तथा संक्रामक हों किंतु सममित नहीं हों।
यदि A = {1, 2, 3, 4}, तो A में निम्लिखित गुण वाले संबंध को परिभाषित कीजिए:
सममित हों परन्तु न तो स्वतुल्य हों और न संक्रामक हों।
मान लीजिए कि R, प्राकृत संख्याओं के समुच्चय N में निम्नलिखित प्रकार से परिभाषित एक संबंध है।
R = {(x, y): x ∈ N, y ∈ N, 2x + y = 41}। संबंध R का प्रांत तथा परिसर ज्ञात कीजिए। साथ ही सत्यापित (जाँच) कीजिए कि क्या R स्वतुल्य, सममित तथा संक्रामक है।
दिया हुआ है कि A = {2, 3, 4}, B = {2, 5, 6, 7}। निम्नलिखित में से उदाहरण की रचना कीजिए :
A से B में एक ऐसा प्रतिचित्रण, जो एकैक नहीं है।
निम्नलिखित में से N में एक संबंध परिभाषित करते है:
x + 4y = 10, x, y ∈ N
निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।
मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?
a * b = a – b ∀ a, b ∈ Q
मान लीजिए कि R में द्वारा द्वि-आधारी *, a * b = 1 + ab, ∀ a, b ∈ R तो संक्रिया *
मान लीजिए कि हम R में एक संबंध R इस प्रकार परिभाषित करें aRb यदि a ≥ b, तो R _________ है।
मान लीजिए कि f: R → R f(x) = 3x2 - 5 द्वारा तथा g: R → R g(x) = `x/(x^2 + 1)` द्वारा परिभाषित है, तो g o f ______ है।
मान लीजिए f: [0, 1] → [0, 1] f(x) =`[(x, "यदि" x "परिमेय है")/(1-x "यदि" x "अपरिमेय है")]`
द्वारा परिभाषित है, तो (f o f) x ______ है।
मान लीजिए f: R → R, f(x) = sin (3x+2) ∀ x ∈ R द्वारा परिभाषित एक फलन है। तो f व्युत्क्रमणीय है।
एक पूर्णांक m एक अन्य पूर्णांक n से संबंधित कहालाता है, यदि m, एक पूर्णांकीय गुणज है n का। Z में इस प्रकार का संबंध स्वतुल्य, सममित तथा संक्रामक होता है।