English

मान लीजिए कि f : R → R, f (x) = x2 + 1 द्वारा परिभषित हैं, तो 17 तथा -3 के पूर्व प्रतिबिम्ब क्रमश: - Mathematics (गणित)

Advertisements
Advertisements

Question

मान लीजिए कि f : R → R, f (x) = x2 + 1 द्वारा परिभषित हैं, तो 17 तथा -3 के पूर्व प्रतिबिम्ब क्रमश: 

Options

  • φ, {4, – 4}

  • {3, – 3}, φ

  • {4, – 4}, φ

  • {4, – 4, {2, – 2}

MCQ

Solution

 सही विकल्प - {4, – 4}, φ

क्योंकि 

f–1(17) = x

⇒ f(x) = 17 या x2 + 1 = 17

⇒ x = ± 4 या f–1(17)

= {4, – 4} तथा  f–1(–3) = x के लिए

⇒ f(x) = – 3

⇒ x2 + 1 = – 3

⇒ x2 = – 4 अत: f–1(– 3) = φ

shaalaa.com
संबंध एवं फलन
  Is there an error in this question or solution?
Chapter 1: संबंध एव फलन - हल किये हुए उदाहरण [Page 10]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 1 संबंध एव फलन
हल किये हुए उदाहरण | Q 23 | Page 10

RELATED QUESTIONS

मान लीजिए कि f : R → R है तब निम्नलिखित प्रकार से परिभाषित चिन्ह फलन (Signum Function) है |

f(x) = `{(1"," x > 0), (0"," x = 0),(-1"," x < 0):}`

तथा g : R → R, g(x) = [x], द्वारा प्रदत्त महत्तम पूर्णांक फलन है, जहाँ [x], x से कम या x के बराबर पूर्णांक है, तो क्या fog तथा gof, अंतराल [0, 1] में संपाती (coincide) हैं?


समुच्चय A = {1, 2, 3}, के लिए एक संबंध निचे लिखे अनुसार परिभाषित कीजिए:

R = {(1, 1), (2, 2), (3, 3), (1, 3)}

उन क्रमित युग्मों को लिखिए जिनको R में जोड़ने से वह न्यूनतम (छोटे से छोटा) तुल्यता संबंध बन जाए।


मान लीजिए कि फलन f : R → R , f (x) = 4x – 1, ∀ x ∈ R द्वारा परिभषित है, तो सिद्ध कीजिए कि f एकैकी है।


यदि f = {(5, 2), (6, 3)}, g = {(2, 5), (3, 6)}, तो f o g लिखिए।


यदि f = {(5, 2), (6, 3)} तथा g = {(2, 5), (3, 6)}, तो f तथा g के परिसर लिखिए।


यदि A = {a, b, c, d} तथा f = {a, b), (b, d), (c, a), (d, c)} तो सिद्ध कीजिए कि f एकैकी है तथा A से A पर आच्छादि है। f –1 भी ज्ञात कीजिए।


मान लीजिए कि Q में परिभाषित * एक द्वि- आधारी संक्रिया है। ज्ञात कीजिए कि निम्नलिखित में से कौन-सा द्विआधारी संक्रिया साहचर्य है:

a, b ∈ Q के लिए a * b = a – b + ab


मान लीजिए कि N प्राकृत संख्याओं के समुच्चय है तथा f : N → N, f (n) = 2n + 3 ∀ n ∈ N द्वारा परिभाषित एक फलन है, तो f


मान लीजिए कि D, f(x) = `sqrt(25 - x^2)` द्वारा परिभाषित, वास्तविक मान फलन f का प्रांत है तो D को लिखिए।


यदि A = {a, b, c, d} तथा फलन f = {(a, b), (b, d), (c, a), (d, c)} तो f –1 लिखिए।


क्या क्रमित युग्मों का निम्लिखित समुच्चय, फलन हैं? यदि ऐसा है, तो जाँच कीजिए कि प्रतिचित्रण एकैक अथवा आच्छादि हैं कि नहीं हैं।

{(x, y): x एक व्यक्ति है, y माँ है x की}


मान लीजिए कि X = {1, 2, 3} तथा Y = {4, 5}। ज्ञात कीजिए कि क्या X ×Y के निम्नलिखित उपसमुच्चय X से Y में फलन हैं या नहीं हैं।

f = {(1, 4), (1, 5), (2, 4), (3, 5)}


मान लीजिए f: R → R f(x) = `1/(2 - cosx)` x R द्वारा परिभाषित एक फलन है। तो , f का परिसर ज्ञात कीजिए।


मान लीजिए कि R, प्राकृत संख्याओं के समुच्चय N में निम्नलिखित प्रकार से परिभाषित एक संबंध है।

R = {(x, y): x ∈ N, y ∈ N, 2x + y = 41}। संबंध R का प्रांत तथा परिसर ज्ञात कीजिए। साथ ही सत्यापित (जाँच) कीजिए कि क्या R स्वतुल्य, सममित तथा संक्रामक है।


एक ऐसे प्रतिचित्रण का उदाहरण दीजिए जो -

एकैकी है किंतु आच्छादक नहीं है।


निम्नलिखित में से N में एक संबंध परिभाषित करते है:

x बड़ा है y से, x, y ∈ N 

निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।


निम्नलिखित में से N में एक संबंध परिभाषित करते है:

x y किसी पूर्णाक का वर्ग है,  x, y ∈ N

निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।


फलन f , g: R → R क्रमशः f(x) = x2 + 3x + 1 तथा g(x) = 2x - 3 द्वारा परिभाषित हैं, तो g o f ज्ञात कीजिए:


फलन f , g: R → R क्रमशः f(x) = x2 + 3x + 1 तथा g(x) = 2x - 3 द्वारा परिभाषित हैं, तो g o g ज्ञात कीजिए:


मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?

a * b = (a – b)2 ∀ a, b ∈ Q


मान लीजिए कि R में द्वारा द्वि-आधारी *, a * b = 1 + ab, ∀ a, b ∈ R तो संक्रिया *


Q ~ {0} में  a * b = ` (ab)/2` ∀ a, b ∈ Q ~ {0} प्रकार से परिभाषित द्वि-आधारी संक्रिया * का (के लिए) तत्सम अवयव ______ है।


माना लीजिए कि A = {1, 2, 3, ...n} तथा B = {a, b}। तो A से B में आच्छादी प्रतिचित्रों (प्रतिचित्रणों) की संख्या _________ है।


मान लीजिए f: R → R f(x) = x3 + 5 द्वारा परिभाषित एक फलन है, तो f–1(x)  ______ है।


मान लीजिए f: [0, 1] → [0, 1] f(x) =`[(x, "यदि"  x  "परिमेय है")/(1-x  "यदि"  x  "अपरिमेय है")]`

द्वारा परिभाषित है, तो (f o f) x ______ है।  


मान लीजिए f: N → R f(x) = `(2x - 1)/2` द्वारा परिभाषित एक फलन है तथा g: Q → R g(x) = x + 2 द्वारा परिभाषित एक अन्य फलन है। तो (g o f) ` 3/2` ______ है।


मान लीजिए कि f: R → R f(x) = tan x द्वारा दत्त है, तो f-1(1) _______ है।


प्रत्येक संबंध जो सममित तथा संक्रामक है, स्वतुल्य भी है।


फलनों का संयोजन क्रम-विनिमेय होता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×