English

वास्तविक संख्याओं x तथा y के लिए परिभाषित कीजिए कि xRy, यदि और केवल यदि x - y + 2 एक अपरिमेय संख्या है, तो संबंध R - Mathematics (गणित)

Advertisements
Advertisements

Question

वास्तविक संख्याओं x तथा y के लिए परिभाषित कीजिए कि xRy, यदि और केवल यदि x - y + `sqrt(2)` एक अपरिमेय संख्या है, तो संबंध R

Options

  • स्वतुल्य है।

  • सममित है।

  • संक्रामक है।

  • इनमें से कोई भी नहीं है।

MCQ

Solution

सही विकल्प - स्वतुल्य है।

shaalaa.com
संबंध एवं फलन
  Is there an error in this question or solution?
Chapter 1: संबंध एव फलन - हल किये हुए उदाहरण [Page 10]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 1 संबंध एव फलन
हल किये हुए उदाहरण | Q 24 | Page 10

RELATED QUESTIONS

मान लीजिए कि A = {0, 1, 2, 3} तथा A में एक संबंध R निम्नलिखित प्रकार से परिभाषित कीजिए:

R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}

क्या R स्वतुल्य, सममित, संक्रामक है?


समुच्चय A = {1, 2, 3}, के लिए एक संबंध निचे लिखे अनुसार परिभाषित कीजिए:

R = {(1, 1), (2, 2), (3, 3), (1, 3)}

उन क्रमित युग्मों को लिखिए जिनको R में जोड़ने से वह न्यूनतम (छोटे से छोटा) तुल्यता संबंध बन जाए।


मान लीजिए कि R = {(a, b) : संख्या 2, a – b को विभाजित करती है} द्वारा परिभाषित संबध R पूर्णांकों के समुच्चय Z में तुल्यता संबंध है।तुल्यता-वर्ग [0] लिखिए।


प्राकृत संख्याओं के समुच्चय N में एक संबंध R निम्नलिखित प्रकार से परिभाषित कीजिए:

∀ n, m ∈ N, nRm यदि n तथा में से प्रत्येक संख्या को 5 से विभाजित करने पर शेषफल 5 से कम बचता है, अर्थात, 0, 1, 2, 3 तथा 4 में से कोई एक संख्या। सिद्ध कीजिए कि R एक तुल्यता संबंध है। साथ ही R द्वारा निर्धारित युगलत: असयुंक्त उप-समुच्चयों को भी ज्ञात कीजिए।


मान लीजिए कि Q में परिभाषित * एक द्वि- आधारी संक्रिया है। ज्ञात कीजिए कि निम्नलिखित में से कौन-सा द्विआधारी संक्रिया साहचर्य है:

 a, b ∈ Q के लिए a * b = `"ab"/4` 


मान लीजिए कि Q में परिभाषित * एक द्वि- आधारी संक्रिया है। ज्ञात कीजिए कि निम्नलिखित में से कौन-सा द्विआधारी संक्रिया साहचर्य है:

a, b ∈ Q के लिए a * b = ab2


मान लीजिए कि L किसी समतल में स्थित सभी सरल रेखाओं के समुच्चय को निरूपित करता है। मान लीजिए कि एक संबंध R, नियम lRm यदि और केवल यदि l लम्ब है m पर, ∀ l, m ∈ L, द्वारा परिभाषित है। तब R


मान लीजिए कि f: R → R, f(x) = 3x – 4, द्वारा परिभषित हैं, तो f–1(x)


समुच्चय A, B तथा C के लिए, मान लीजिए कि f : A → B, g : B → C फलन इस प्रकार के हैं कि फलन g o f एकैक है तो f तथा g दोनों ही एकैक फलन हैं।


मान लीजिए कि D, f(x) = `sqrt(25 - x^2)` द्वारा परिभाषित, वास्तविक मान फलन f का प्रांत है तो D को लिखिए।


मान लीजिए कि f , g : R → R क्रमश: f (x) = 2x + 1 तथा g (x) = x2 – 2, ∀ x ∈ R द्वारा परिभाषित हैं, तो g o f ज्ञात कीजिए।


क्या क्रमित युग्मों का निम्लिखित समुच्चय, फलन हैं? यदि ऐसा है, तो जाँच कीजिए कि प्रतिचित्रण एकैक अथवा आच्छादि हैं कि नहीं हैं।

{(x, y): x एक व्यक्ति है, y माँ है x की}


यदि प्रतिचित्रण f तथा g क्रमश: f = {(1, 2), (3, 5), (4, 1)} तथा  g = {(2, 3), (5, 1), (1, 3)} द्वारा दत्त हैं, तो f o g लिखिए।


मान लीजिए कि X = {1, 2, 3} तथा Y = {4, 5}। ज्ञात कीजिए कि क्या X ×Y के निम्नलिखित उपसमुच्चय X से Y में फलन हैं या नहीं हैं।

f = {(1, 4), (1, 5), (2, 4), (3, 5)}


मान लीजिए n एक निश्चित (स्थिर) धन पूर्णांक है। Z में एक संबंध R निम्लिखित प्रकार से परिभाषित कीजिए : ∀ a, b ∈ Z, aRb यदि और केवल यदि a - b, भाज्य है n से। सिद्ध किजिए कि R एक तुल्यता संबंध है।


यदि A = {1, 2, 3, 4}, तो A में निम्लिखित गुण वाले संबंध को परिभाषित कीजिए:

स्वतुल्य, सममित तथा संक्रामक हों।


दिया हुआ है कि A = {2, 3, 4}, B = {2, 5, 6, 7}। निम्नलिखित में से उदाहरण की रचना कीजिए :

A से B में एक एकैक प्रतिचित्रण।


दिया हुआ है कि A = {2, 3, 4}, B = {2, 5, 6, 7}। निम्नलिखित में से उदाहरण की रचना कीजिए :

B से A में एक प्रतिचित्रण।


एक ऐसे प्रतिचित्रण का उदाहरण दीजिए जो -

न तो एकैकी है और न आच्छादक है।


फलन f , g: R → R क्रमशः f(x) = x2 + 3x + 1 तथा g(x) = 2x - 3 द्वारा परिभाषित हैं, तो f o g ज्ञात कीजिए:


मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?

a * b = a + ab ∀ a, b ∈ Q


मान लीजिए कि T, यूक्लिडिय समतल में, सभी त्रिभुजों का समुच्चय है तथा मान लीजिए कि T में एक संबंध R इस प्रकार परिभाषित है कि aRb, यदि a सर्वांगसम है b के, ∀ a, b ∈ T, तो R ______


किसी परिवार में बच्चों के अरिक्त समुच्चय तथा aRb, यदि a भाई है b का, द्वारा परिभाषित संबंध R पर विचार कीजिए, तो R ______


मान लीजिए कि A = {1, 2, 3} संबंध R = {1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1,3)}, पर विचार कीजिए, तो R _________ है।


मान लीजिए f: A → B तथा g: B → C एकैकी आच्छादी फलन हैं, तो (g o f)-1 ______ है।


मान लीजिए f: N → R f(x) = `(2x - 1)/2` द्वारा परिभाषित एक फलन है तथा g: Q → R g(x) = x + 2 द्वारा परिभाषित एक अन्य फलन है। तो (g o f) ` 3/2` ______ है।


मान लीजिए f: R → R,  f(x) = `{{:(2x",", x > 3),(x^2",", 1 < x ≤ 3),(3x",", x ≤ 1):}` द्वारा परिभाषित है, तो f (-1) + f (2) + f (4) ______ है।


मान लीजिए कि A = {1, 2, 3, 4, 5} में एक संबंध R = {(a, b) : |a2 - b2| <8 द्वारा परिभाषित है, तो R _______ द्वारा व्यक्त है।


समुच्चय A = {1, 2, 3} में R = {{1, 1), (1, 2), (2, 1), (3, 3)} प्रकार से परिभाषित संबंध R स्वतुल्य, सममित तथा संक्रामक है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×