Advertisements
Advertisements
Question
मान लीजिए कि Q में परिभाषित * एक द्वि- आधारी संक्रिया है। ज्ञात कीजिए कि निम्नलिखित में से कौन-सा द्विआधारी संक्रिया साहचर्य है:
a, b ∈ Q के लिए a * b = `"ab"/4`
Solution
* साहचर्य है, क्योंकि Q में गुणन साहचर्य होता है।
APPEARS IN
RELATED QUESTIONS
यदि A = {1, 2, 3} तथा f, g, A × A के उप-समुच्चय के संग निम्नलिखित प्रकार सूचित संबंध हैं
f = {(1, 3), (2, 3), (3, 2)}
g = {(1, 2), (1, 3), (3, 1)}
f तथा g में से कौन फलन है और क्यों?
प्राकृत संख्याओं के समुच्चय N में एक संबंध R निम्नलिखित प्रकार से परिभाषित कीजिए:
∀ n, m ∈ N, nRm यदि n तथा में से प्रत्येक संख्या को 5 से विभाजित करने पर शेषफल 5 से कम बचता है, अर्थात, 0, 1, 2, 3 तथा 4 में से कोई एक संख्या। सिद्ध कीजिए कि R एक तुल्यता संबंध है। साथ ही R द्वारा निर्धारित युगलत: असयुंक्त उप-समुच्चयों को भी ज्ञात कीजिए।
मान लीजिए कि R वास्तविक संख्याओ का समुच्चय है तथा f : R → R एक फलन है, जो f (x) = 4x + 5 द्वारा परिभाषित है। सिद्ध कीजिए कि f व्युत्क्रमणीय है तथा f–1 ज्ञात कीजिए।
मान लीजिए कि f : R → R, f (x) = sin x तथा g : R → R g (x) = x2 द्वारा परिभषित हैं, तो f o g
समुच्चय A = {1, 2, 3} पर विचार कीजिए तथा R, A में छोटे से छोटा तुल्यता संबंध है, तो R = ______
अवयवों वाले समुच्चय A पर विचार कीजिए। A से स्वयं A पर एकैकी आच्छादक फलनों की कुल संख्या ______ है।
मान लीजिए कि A एक परिमित समुच्चय है, तो A से स्वयं A में प्रत्येक एकैक फलन आच्छादी नहीं है।
मान लीजिए कि f , g : R → R क्रमश: f (x) = 2x + 1 तथा g (x) = x2 – 2, ∀ x ∈ R द्वारा परिभाषित हैं, तो g o f ज्ञात कीजिए।
यदि f : R → R, f (x) = x2 – 3x + 2 द्वारा परिभाषित है, तो f (f (x)) लिखिए।
क्या क्रमित युग्मों का निम्लिखित समुच्चय, फलन हैं? यदि ऐसा है, तो जाँच कीजिए कि प्रतिचित्रण एकैक अथवा आच्छादि हैं कि नहीं हैं।
{(x, y): x एक व्यक्ति है, y माँ है x की}
क्या क्रमित युग्मों का निम्लिखित समुच्चय, फलन हैं? यदि ऐसा है, तो जाँच कीजिए कि प्रतिचित्रण एकैक अथवा आच्छादि हैं कि नहीं हैं।
{(a, b): a एक व्यक्ति है, b पूर्वज है a का}
यदि प्रतिचित्रण f तथा g क्रमश: f = {(1, 2), (3, 5), (4, 1)} तथा g = {(2, 3), (5, 1), (1, 3)} द्वारा दत्त हैं, तो f o g लिखिए।
यदि A = {1, 2, 3, 4}, तो A में निम्लिखित गुण वाले संबंध को परिभाषित कीजिए:
स्वतुल्य, सममित तथा संक्रामक हों।
मान लीजिए कि R, प्राकृत संख्याओं के समुच्चय N में निम्नलिखित प्रकार से परिभाषित एक संबंध है।
R = {(x, y): x ∈ N, y ∈ N, 2x + y = 41}। संबंध R का प्रांत तथा परिसर ज्ञात कीजिए। साथ ही सत्यापित (जाँच) कीजिए कि क्या R स्वतुल्य, सममित तथा संक्रामक है।
मान लीजिए कि A = R – {3}, B = R – {1}, मान लीजिए कि f : A → B, f (x) = `(x - 2) /(x - 3)` ∀ x ∈ A द्वारा परिभाषित है, तो सिद्ध कीजिए कि f एकैकी आच्छादी है।
मान लीजिए A = [-1, 1]। तो विचार कीजिए कि क्या A में परिभाषित निम्नलिखित फलनएकैकी, आच्छादक या एकैकी आच्छादी हैं:
g(x) = |x|
मान लीजिए A = {1, 2, 3, ... 9} तथा A ×A में (a, b)] (c, d) के लिए (a, b) R (c, d) यदि और केवल यदि a + d = b + c द्वारा परिभाषित R एक संबंध हैं। सिद्ध कीजिए कि R एक तुल्यता संबंध है तथा तुल्यता-वर्ग [(2, 5)] भी प्राप्त (ज्ञात) कीजिए।
मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?
a * b = a – b ∀ a, b ∈ Q
मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?
a * b = a + ab ∀ a, b ∈ Q
मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?
a * b = (a – b)2 ∀ a, b ∈ Q
मान लीजिए कि f: R → R f(x) = 3x2 - 5 द्वारा तथा g: R → R g(x) = `x/(x^2 + 1)` द्वारा परिभाषित है, तो g o f ______ है।
मान लीजिए कि f: R - `{3/5}` → R, f(x) = `(3x + 2)/(5x - 3)` द्वारा परिभाषित है, तो ______
मान लीजिए f: `[2, oo)` → R f(x) = x2 - 4x + 5 द्वारा परिभाषित फलन है, तो f का परिसर ______ है।
मान लीजिए कि f: R → R, f(x) = `x/sqrt(1 + x^2)` द्वारा परिभाषित है, तो ( f o f o f ) (x) = ______।
यदि f(x) = (4 - (x - 7)3}, तो f–1(x) = ______।
प्रत्येक संबंध जो सममित तथा संक्रामक है, स्वतुल्य भी है।
समुच्चय A = {1, 2, 3} में R = {{1, 1), (1, 2), (2, 1), (3, 3)} प्रकार से परिभाषित संबंध R स्वतुल्य, सममित तथा संक्रामक है।