English

मान लीजिए कि f , g : R → R क्रमश: f (x) = 2x + 1 तथा g (x) = x2 – 2, ∀ x ∈ R द्वारा परिभाषित हैं, तो g o f ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

मान लीजिए कि f , g : R → R क्रमश: f (x) = 2x + 1 तथा g (x) = x2 – 2, ∀ x ∈ R द्वारा परिभाषित हैं, तो g o f ज्ञात कीजिए।

Sum

Solution

दिया गया है, f(x) = 2x + 1 और g(x) = x2 – 2, ∀ x ∈ R

तब (gof)x = g(f(x)} = g(2x + 1) = (2x + 1)2 – 2

= 4x2 + 4x + 1 - 2

= 4x2 + 4x - 1

shaalaa.com
संबंध एवं फलन
  Is there an error in this question or solution?
Chapter 1: संबंध एव फलन - प्रश्नावली [Page 12]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 1 संबंध एव फलन
प्रश्नावली | Q 3 | Page 12

RELATED QUESTIONS

फलन f(x) = f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)` का प्रांत ज्ञात कीजिए।


यदि f : R → R जहाँ f(x) = x2 - 3x + 2 द्वारा परिभाषित है तो f(f(x)) ज्ञात कीजिए |


समुच्चय A = {1, 2, 3}, के लिए एक संबंध निचे लिखे अनुसार परिभाषित कीजिए:

R = {(1, 1), (2, 2), (3, 3), (1, 3)}

उन क्रमित युग्मों को लिखिए जिनको R में जोड़ने से वह न्यूनतम (छोटे से छोटा) तुल्यता संबंध बन जाए।


मान लीजिए कि f(x) = |x| + x तथा g(x) = x – x ∀ x ∈ R द्वारा परिभाषित f, g: R → R दो फलन हैं, तो f o g तथा g o f  ज्ञात कीजिए।


मान लीजिए कि R प्राकृत संख्याओं के समुच्चय N में एक संबंध है, जो nRm यदि n विभाजित करता है m को, द्वारा परिभाषित है, तो R


मान लीजिए कि L किसी समतल में स्थित सभी सरल रेखाओं के समुच्चय को निरूपित करता है। मान लीजिए कि एक संबंध R, नियम lRm यदि और केवल यदि l लम्ब है m पर, ∀ l, m ∈ L, द्वारा परिभाषित है। तब R


मान लीजिए कि f: R → R, f(x) = 3x – 4, द्वारा परिभषित हैं, तो f–1(x)


वास्तविक संख्याओं x तथा y के लिए परिभाषित कीजिए कि xRy, यदि और केवल यदि x - y + `sqrt(2)` एक अपरिमेय संख्या है, तो संबंध R


समुच्चय A = {1, 2, 3} पर विचार कीजिए तथा R, A में छोटे से छोटा तुल्यता संबंध है, तो R = ______


मान लीजिए कि Z पूर्णांकों का समुच्चय है तथा R, Z में परिभाषित एक संबंध इस प्रकार है aRb, कि यदि a – b भाज्य है 3 से, तो R समुच्चय Z को ______ युगलत: असंयुक्त उप-समुच्चयों में विभाजन करता है।


समुच्चय A = {1, 2, 3} तथा R = {(1, 2), (1, 3)} पर विचार कीजिए। R एक संक्रामक संबंध है।


समुच्चय A, B तथा C के लिए, मान लीजिए कि f : A → B, g : B → C फलन इस प्रकार के हैं कि फलन g o f एकैक है तो f तथा g दोनों ही एकैक फलन हैं।


यदि f : R → R, f (x) = x2 – 3x + 2 द्वारा परिभाषित है, तो f (f (x)) लिखिए।


क्या क्रमित युग्मों का निम्लिखित समुच्चय, फलन हैं? यदि ऐसा है, तो जाँच कीजिए कि प्रतिचित्रण एकैक अथवा आच्छादि हैं कि नहीं हैं।

{(a, b): a एक व्यक्ति है, b पूर्वज है a का}


यदि प्रतिचित्रण f तथा g क्रमश: f = {(1, 2), (3, 5), (4, 1)} तथा  g = {(2, 3), (5, 1), (1, 3)} द्वारा दत्त हैं, तो f o g लिखिए।


मान लीजिए कि X = {1, 2, 3} तथा Y = {4, 5}। ज्ञात कीजिए कि क्या X ×Y के निम्नलिखित उपसमुच्चय X से Y में फलन हैं या नहीं हैं।

f = {(1, 4), (1, 5), (2, 4), (3, 5)}


मान लीजिए कि X = {1, 2, 3} तथा Y = {4, 5}। ज्ञात कीजिए कि क्या X ×Y के निम्नलिखित उपसमुच्चय X से Y में फलन हैं या नहीं हैं।

h = {(1,4), (2, 5), (3, 5)}


यदि A = {1, 2, 3, 4}, तो A में निम्लिखित गुण वाले संबंध को परिभाषित कीजिए:

स्वतुल्य तथा संक्रामक हों किंतु सममित नहीं हों।


एक ऐसे प्रतिचित्रण का उदाहरण दीजिए जो -

न तो एकैकी है और न आच्छादक है।


मान लीजिए A = [-1, 1]। तो विचार कीजिए कि क्या A में परिभाषित निम्नलिखित फलनएकैकी, आच्छादक या एकैकी आच्छादी हैं:

g(x) = |x|


निम्नलिखित में से N में एक संबंध परिभाषित करते है:

x y किसी पूर्णाक का वर्ग है,  x, y ∈ N

निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।


निम्नलिखित में से N में एक संबंध परिभाषित करते है:

x + 4y = 10, x, y ∈ N

निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।


फलन f , g: R → R क्रमशः f(x) = x2 + 3x + 1 तथा g(x) = 2x - 3 द्वारा परिभाषित हैं, तो g o g ज्ञात कीजिए:


मान लीजिए कि A = {1, 2, 3} संबंध R = {1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1,3)}, पर विचार कीजिए, तो R _________ है।


मान लीजिए f: [0, 1] → [0, 1] f(x) =`[(x, "यदि"  x  "परिमेय है")/(1-x  "यदि"  x  "अपरिमेय है")]`

द्वारा परिभाषित है, तो (f o f) x ______ है।  


मान लीजिए f: `[2, oo)` → R f(x) = x2 - 4x + 5 द्वारा परिभाषित फलन है, तो f का परिसर ______ है।


एक पूर्णांक m एक अन्य पूर्णांक n से संबंधित कहालाता है, यदि m, एक पूर्णांकीय गुणज है n का। Z में इस प्रकार का संबंध स्वतुल्य, सममित तथा संक्रामक होता है।


मान लीजिए A = {0, 1} और N प्राकृत संख्याओं का समुच्चय है, तो f(2n – 1) = 0, f(2n) = 1, ∀ n∈ N द्वारा परिभाषित प्रतिचित्रण f: N → A आच्छादक है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×