Advertisements
Advertisements
Question
यदि A = {1, 2, 3, 4}, तो A में निम्लिखित गुण वाले संबंध को परिभाषित कीजिए:
स्वतुल्य तथा संक्रामक हों किंतु सममित नहीं हों।
Solution
दिया गया है,, A = {1, 2, 3}
मान लीजिए R1 = {(1, 1), (1, 2), (1, 3), (2, 3), (2, 2), (1, 3), (3, 3)}
R1 स्वतुल्य है क्योंकि (1, 1), (2, 2) और (3, 3) झूठ R1 है।
R1 संक्रामक है जैसे (1, 2) ∈ R1, (2, 3) ∈ R1 ⇒ (1, 3) ∈ R1
अब, (1, 2) ∈ R1 ⇒ (2, 1) ∉ R1
APPEARS IN
RELATED QUESTIONS
यदि f : R → R जहाँ f(x) = x2 - 3x + 2 द्वारा परिभाषित है तो f(f(x)) ज्ञात कीजिए |
क्या Z (पूर्णांकों का समुच्चय) में m * n = m – n + mn ∀ m, n ∈ Z द्वारा परिभाषित द्विआधारी-संक्रिया * कर्म -विनिमेय है?
मान लीजिए कि f: R → R, f(x) = 3x – 4, द्वारा परिभषित हैं, तो f–1(x)
वास्तविक संख्याओं x तथा y के लिए परिभाषित कीजिए कि xRy, यदि और केवल यदि x - y + `sqrt(2)` एक अपरिमेय संख्या है, तो संबंध R
मान लीजिए कि Z पूर्णांकों का समुच्चय है तथा R, Z में परिभाषित एक संबंध इस प्रकार है aRb, कि यदि a – b भाज्य है 3 से, तो R समुच्चय Z को ______ युगलत: असंयुक्त उप-समुच्चयों में विभाजन करता है।
मान लीजिए कि R वास्तविक संख्याओं का समुच्चय है तथा R में एक द्वि-आधारी संक्रिया * इस प्रकार परिभाषित है कि a * b = a + b – ab ∀ a, b ∈ R. तो द्वि-आधारी संक्रिया * के लिए तत्समक अवयव ______ है।
समुच्चय A = {1, 2, 3} तथा R = {(1, 2), (1, 3)} पर विचार कीजिए। R एक संक्रामक संबंध है।
मान लीजिए कि A एक परिमित समुच्चय है, तो A से स्वयं A में प्रत्येक एकैक फलन आच्छादी नहीं है।
समुच्चय A, B तथा C के लिए, मान लीजिए कि f : A → B, g : B → C फलन इस प्रकार के हैं कि फलन g o f एकैक है तो f तथा g दोनों ही एकैक फलन हैं।
मान लीजिए कि D, f(x) = `sqrt(25 - x^2)` द्वारा परिभाषित, वास्तविक मान फलन f का प्रांत है तो D को लिखिए।
यदि A = {a, b, c, d} तथा फलन f = {(a, b), (b, d), (c, a), (d, c)} तो f –1 लिखिए।
क्या g = {(1, 1), (2, 3), (3, 5), (4, 7)} एक फलन है? यदि g, g (x) = αx + β द्वारा वर्णित है, तो α तथा β का मान क्या निर्धारित होना चाहिए?
मान लीजिए कि X = {1, 2, 3} तथा Y = {4, 5}। ज्ञात कीजिए कि क्या X ×Y के निम्नलिखित उपसमुच्चय X से Y में फलन हैं या नहीं हैं।
f = {(1, 4), (1, 5), (2, 4), (3, 5)}
मान लीजिए कि X = {1, 2, 3} तथा Y = {4, 5}। ज्ञात कीजिए कि क्या X ×Y के निम्नलिखित उपसमुच्चय X से Y में फलन हैं या नहीं हैं।
k = {(1,4), (2, 5)}
मान लीजिए कि R, प्राकृत संख्याओं के समुच्चय N में निम्नलिखित प्रकार से परिभाषित एक संबंध है।
R = {(x, y): x ∈ N, y ∈ N, 2x + y = 41}। संबंध R का प्रांत तथा परिसर ज्ञात कीजिए। साथ ही सत्यापित (जाँच) कीजिए कि क्या R स्वतुल्य, सममित तथा संक्रामक है।
दिया हुआ है कि A = {2, 3, 4}, B = {2, 5, 6, 7}। निम्नलिखित में से उदाहरण की रचना कीजिए :
A से B में एक एकैक प्रतिचित्रण।
मान लीजिए A = [-1, 1]। तो विचार कीजिए कि क्या A में परिभाषित निम्नलिखित फलन एकैकी, आच्छादक या एकैकी आच्छादी हैं:
h(x) = x|x|
फलन f , g: R → R क्रमशः f(x) = x2 + 3x + 1 तथा g(x) = 2x - 3 द्वारा परिभाषित हैं, तो g o f ज्ञात कीजिए:
मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?
a * b = (a – b)2 ∀ a, b ∈ Q
किसी परिवार में बच्चों के अरिक्त समुच्चय तथा aRb, यदि a भाई है b का, द्वारा परिभाषित संबंध R पर विचार कीजिए, तो R ______
समुच्चय A = {1, 2, 3} में तुल्यता संबंधों की अधिकतम संख्या ______ है।
मान लीजिए f: R → R f(x) = x3 + 5 द्वारा परिभाषित एक फलन है, तो f–1(x) ______ है।
मान लीजिए कि f: R - `{3/5}` → R, f(x) = `(3x + 2)/(5x - 3)` द्वारा परिभाषित है, तो ______
मान लीजिए f: `[2, oo)` → R f(x) = x2 - 4x + 5 द्वारा परिभाषित फलन है, तो f का परिसर ______ है।
मान लीजिए कि A = {1, 2, 3, 4, 5} में एक संबंध R = {(a, b) : |a2 - b2| <8 द्वारा परिभाषित है, तो R _______ द्वारा व्यक्त है।
मान लीजिए f: R → R, f(x) = sin (3x+2) ∀ x ∈ R द्वारा परिभाषित एक फलन है। तो f व्युत्क्रमणीय है।
एक पूर्णांक m एक अन्य पूर्णांक n से संबंधित कहालाता है, यदि m, एक पूर्णांकीय गुणज है n का। Z में इस प्रकार का संबंध स्वतुल्य, सममित तथा संक्रामक होता है।
फलनों का संयोजन क्रम-विनिमेय होता है।