Advertisements
Advertisements
Question
मान लीजिए n एक निश्चित (स्थिर) धन पूर्णांक है। Z में एक संबंध R निम्लिखित प्रकार से परिभाषित कीजिए : ∀ a, b ∈ Z, aRb यदि और केवल यदि a - b, भाज्य है n से। सिद्ध किजिए कि R एक तुल्यता संबंध है।
Solution
दिया गया ∀ a, b ∈ Z, aRb यदि और केवल यदि a – b, n से विभाज्य है।
अब, के लिए
aRa (a - a) n से विभाज्य है, जो किसी भी पूर्णांक a के लिए सत्य है क्योंकि '0' n से विभाज्य है।
इस प्रकार, R परावर्तक है।
अब, aRb
अत: (a – b) n से विभाज्य है।
⇒ – (b – a) n से विभाज्य है।
⇒ (b – a) n से विभाज्य है।
⇒ bRa
अत: R सममित है।
मान लीजिए aRb और bRc हैं।
तब, (a - b) n से विभाज्य है और (b - c) n से विभाज्य है।
अत: (a – b) + (b – c) n से विभाज्य है।
⇒ (a – c) n से विभाज्य है।
⇒ aRc
इस प्रकार, R सकर्मक है।
अतः R एक तुल्यता संबंध है।
APPEARS IN
RELATED QUESTIONS
मान लीजिए कि R प्राकृत संख्याओं के समुच्चय N में एक संबंध है, जो nRm यदि n विभाजित करता है m को, द्वारा परिभाषित है, तो R
समुच्चय A में 3 अवयव हैं तथा समुच्चय B में 4 अवयव हैं, तो A से B में परिभाषित एकैक प्रतिचित्रणों की संख्या
मान लीजिए कि f : R → R, f (x) = sin x तथा g : R → R g (x) = x2 द्वारा परिभषित हैं, तो f o g
f (x) = `sqrt(x^2 –3x +2)` द्वारा परिभषित फलन f : R → R का प्रांत ______ है।
समुच्चय A, B तथा C के लिए, मान लीजिए कि f : A → B, g : B → C फलन इस प्रकार के हैं कि फलन g o f आच्छादी है तो f तथा g भी आच्छादी हैं।
मान लीजिए कि A = {a, b, c} तथा A में परिभाषित संबंध R निम्नलिखित है:
R = {(a, a), (b, c), (a, b)}. तो उन क्रमित युग्मों की, कम से कम, संख्या लिखिए, जिनको R में जोड़ने से R स्वतुल्य तथा संक्रामक बन जाता है।
मान लीजिए कि D, f(x) = `sqrt(25 - x^2)` द्वारा परिभाषित, वास्तविक मान फलन f का प्रांत है तो D को लिखिए।
मान लीजिए कि f: R → R फलन f(x) = 2x – 3 ∀ x ∈ R द्वारा परिभाषित है। f–1 लिखिए।
यदि फलन f: A → B तथा g: B → A, g o f = IA को संतुष्ट करता हैं, तो सिद्ध कीजिए कि f एकैक है तथा g आच्छादक है।
यदि A = {1, 2, 3, 4}, तो A में निम्लिखित गुण वाले संबंध को परिभाषित कीजिए:
स्वतुल्य तथा संक्रामक हों किंतु सममित नहीं हों।
दिया हुआ है कि A = {2, 3, 4}, B = {2, 5, 6, 7}। निम्नलिखित में से उदाहरण की रचना कीजिए :
A से B में एक एकैक प्रतिचित्रण।
एक ऐसे प्रतिचित्रण का उदाहरण दीजिए जो -
एकैकी नहीं है किंतु आच्छादक है।
मान लीजिए कि A = R – {3}, B = R – {1}, मान लीजिए कि f : A → B, f (x) = `(x - 2) /(x - 3)` ∀ x ∈ A द्वारा परिभाषित है, तो सिद्ध कीजिए कि f एकैकी आच्छादी है।
न लीजिए A = [-1, 1]। तो विचार कीजिए कि क्या A में परिभाषित निम्नलिखित फलन एकैकी, आच्छादक या एकैकी आच्छादी हैं:
k(x) = x2
निम्नलिखित में से N में एक संबंध परिभाषित करते है:
x y किसी पूर्णाक का वर्ग है, x, y ∈ N
निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।
मान लीजिए A = {1, 2, 3, ... 9} तथा A ×A में (a, b)] (c, d) के लिए (a, b) R (c, d) यदि और केवल यदि a + d = b + c द्वारा परिभाषित R एक संबंध हैं। सिद्ध कीजिए कि R एक तुल्यता संबंध है तथा तुल्यता-वर्ग [(2, 5)] भी प्राप्त (ज्ञात) कीजिए।
फलन f , g: R → R क्रमशः f(x) = x2 + 3x + 1 तथा g(x) = 2x - 3 द्वारा परिभाषित हैं, तो f o g ज्ञात कीजिए:
मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?
a * b = a – b ∀ a, b ∈ Q
मान लीजिए कि T, यूक्लिडिय समतल में, सभी त्रिभुजों का समुच्चय है तथा मान लीजिए कि T में एक संबंध R इस प्रकार परिभाषित है कि aRb, यदि a सर्वांगसम है b के, ∀ a, b ∈ T, तो R ______
मान लीजिए कि हम R में एक संबंध R इस प्रकार परिभाषित करें aRb यदि a ≥ b, तो R _________ है।
मान लीजिए f: R → R f(x) = x3 + 5 द्वारा परिभाषित एक फलन है, तो f–1(x) ______ है।
मान लीजिए f: [0, 1] → [0, 1] f(x) =`[(x, "यदि" x "परिमेय है")/(1-x "यदि" x "अपरिमेय है")]`
द्वारा परिभाषित है, तो (f o f) x ______ है।
मान लीजिए f: `[2, oo)` → R f(x) = x2 - 4x + 5 द्वारा परिभाषित फलन है, तो f का परिसर ______ है।
मान लीजिए कि f: R → R f(x) = tan x द्वारा दत्त है, तो f-1(1) _______ है।
मान लीजिए कि A = {1, 2, 3, 4, 5} में एक संबंध R = {(a, b) : |a2 - b2| <8 द्वारा परिभाषित है, तो R _______ द्वारा व्यक्त है।
मान लीजिए A = {0, 1} और N प्राकृत संख्याओं का समुच्चय है, तो f(2n – 1) = 0, f(2n) = 1, ∀ n∈ N द्वारा परिभाषित प्रतिचित्रण f: N → A आच्छादक है।
फलनों का संयोजन क्रम-विनिमेय होता है।