English

मान लीजिए A = {1, 2, 3, ... 9} तथा A ×A में (a, b)] (c, d) के लिए (a, b) R (c, d) यदि और केवल यदि a + d = b + c द्वारा परिभाषित R एक संबंध हैं। - Mathematics (गणित)

Advertisements
Advertisements

Question

मान लीजिए A = {1, 2, 3, ... 9} तथा A ×A में (a, b)] (c, d) के लिए (a, b) R (c, d) यदि और केवल यदि a + d = b + c द्वारा परिभाषित R एक संबंध हैं। सिद्ध कीजिए कि R एक तुल्यता संबंध है तथा तुल्यता-वर्ग [(2, 5)] भी प्राप्त (ज्ञात) कीजिए।

Sum

Solution

दिया गया है, A = {1, 2, 3, … 9} और (a, b) R(c, d) यदि a + d = b + c  (a, b), (c, d) ∈ A ×A के लिए

चलो (a, b) R(a, b)

अत: a + b = b + a, ∀ a, b ∈ A जो किसी a, b ∈ A के लिए सत्य है।

इस प्रकार, R स्वतुल्य है।

चलो (a, b) R(c, d)

फिर,

a + d = b + c

c + b = d + a

(c, d) R(a, b)

अत: R सममित है।

चलो (a, b) R(c, d) and (c, d) R(e, f)

a + d = b + c और c + f = d + e

a + d = b + c और d + e = c + f

(a + d) – (d + e = (b + c) – (c + f)

a – e = b – f

a + f = b + e

(a, b) R(e, f)

अत: R संक्रामक है।

इसलिए, R एक तुल्यता संबंध है।

और, [(2, 5) = (1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (6, 9)] संबंध R के अंतर्गत समतुल्य वर्ग है।

shaalaa.com
संबंध एवं फलन
  Is there an error in this question or solution?
Chapter 1: संबंध एव फलन - प्रश्नावली [Page 14]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 1 संबंध एव फलन
प्रश्नावली | Q 23 | Page 14

RELATED QUESTIONS

फलन f(x) = f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)` का प्रांत ज्ञात कीजिए।


क्या Z (पूर्णांकों का समुच्चय) में m * n = m – n + mn ∀ m, n ∈ Z द्वारा परिभाषित द्विआधारी-संक्रिया * कर्म -विनिमेय है? 


यदि A = {1, 2, 3} तथा f, g, A × A के उप-समुच्चय के संग निम्नलिखित प्रकार सूचित संबंध हैं

f = {(1, 3), (2, 3), (3, 2)}

g = {(1, 2), (1, 3), (3, 1)}

f तथा g में से कौन फलन है और क्यों?


प्राकृत संख्याओं के समुच्चय N में m * n = g.c.d (m, n), m, n ∈ N द्वारा द्वि-आधारी- संक्रिया * परिभाषित कीजिए।क्या संक्रिया * कर्मविनिमेय तथा साहचर्य है?


मान लीजिए कि Q में परिभाषित * एक द्वि- आधारी संक्रिया है। ज्ञात कीजिए कि निम्नलिखित में से कौन-सा द्विआधारी संक्रिया साहचर्य है:

a, b ∈ Q के लिए a * b = ab2


मान लीजिए कि f : R → R, f (x) = x2 + 1 द्वारा परिभषित हैं, तो 17 तथा -3 के पूर्व प्रतिबिम्ब क्रमश: 


मान लीजिए कि Z पूर्णांकों का समुच्चय है तथा R, Z में परिभाषित एक संबंध इस प्रकार है aRb, कि यदि a – b भाज्य है 3 से, तो R समुच्चय Z को ______ युगलत: असंयुक्त उप-समुच्चयों में विभाजन करता है।


मान लीजिए कि R वास्तविक संख्याओं का समुच्चय है तथा R में एक द्वि-आधारी संक्रिया * इस प्रकार परिभाषित है कि a * b = a + b – ab ∀ a, b ∈ R. तो द्वि-आधारी संक्रिया * के लिए तत्समक अवयव ______ है।


समुच्चय A = {1, 2, 3} तथा R = {(1, 2), (1, 3)} पर विचार कीजिए। R एक संक्रामक संबंध है।


समुच्चय A, B तथा C के लिए, मान लीजिए कि f : A → B, g : B → C फलन इस प्रकार के हैं कि फलन g o f आच्छादी है तो f तथा g भी आच्छादी हैं। 


मान लीजिए कि N प्राकृत संख्याओं का समुच्चय है, तो a * b = a + b, ∀ a, b ∈ N द्वारा N में परिभाषित द्वि-आधारी संक्रिया * के लिए तत्समक अवयव है।


मान लीजिए कि D, f(x) = `sqrt(25 - x^2)` द्वारा परिभाषित, वास्तविक मान फलन f का प्रांत है तो D को लिखिए।


यदि f : R → R, f (x) = x2 – 3x + 2 द्वारा परिभाषित है, तो f (f (x)) लिखिए।


मान लीजिए कि X = {1, 2, 3} तथा Y = {4, 5}। ज्ञात कीजिए कि क्या X ×Y के निम्नलिखित उपसमुच्चय X से Y में फलन हैं या नहीं हैं।

h = {(1,4), (2, 5), (3, 5)}


मान लीजिए कि X = {1, 2, 3} तथा Y = {4, 5}। ज्ञात कीजिए कि क्या X ×Y के निम्नलिखित उपसमुच्चय X से Y में फलन हैं या नहीं हैं।

k = {(1,4), (2, 5)}


न लीजिए A = [-1, 1]। तो विचार कीजिए कि क्या A में परिभाषित निम्नलिखित फलन एकैकी, आच्छादक या एकैकी आच्छादी हैं:

k(x) = x2 


निम्नलिखित में से N में एक संबंध परिभाषित करते है:

x y किसी पूर्णाक का वर्ग है,  x, y ∈ N

निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।


निम्नलिखित में से N में एक संबंध परिभाषित करते है:

x + 4y = 10, x, y ∈ N

निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।


फलन f , g: R → R क्रमशः f(x) = x2 + 3x + 1 तथा g(x) = 2x - 3 द्वारा परिभाषित हैं, तो f o g ज्ञात कीजिए:


मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?

a * b = a + ab ∀ a, b ∈ Q


यदि समुच्चय {1, 2, 3} में R = {(1, 2)} द्वारा परिभाषित एक संबंध R है, तो R ______ है।


मान लीजिए कि f: R → R f(x) = 3x2 - 5 द्वारा तथा g: R → R g(x) = `x/(x^2 + 1)` द्वारा परिभाषित है, तो g o f ______ है।


मान लीजिए f: [0, 1] → [0, 1] f(x) =`[(x, "यदि"  x  "परिमेय है")/(1-x  "यदि"  x  "अपरिमेय है")]`

द्वारा परिभाषित है, तो (f o f) x ______ है।  


मान लीजिए कि f = {(1, 2), (3, 5), (4, 1) तथा g = {(2, 3), (5, 1), (1, 3)}। तो g o f = ______ तथा f o g = ______।


समुच्चय A = {1, 2, 3} में R = {{1, 1), (1, 2), (2, 1), (3, 3)} प्रकार से परिभाषित संबंध R स्वतुल्य, सममित तथा संक्रामक है।


फलनों का संयोजन साहचर्य होता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×