Advertisements
Advertisements
Question
किसी परिवार में बच्चों के अरिक्त समुच्चय तथा aRb, यदि a भाई है b का, द्वारा परिभाषित संबंध R पर विचार कीजिए, तो R ______
Options
सममित है किन्तु संक्रामक नहीं हैं।
संक्रामक है किन्तु सममित नहीं हैं।
न तो सममित है और न संक्रामक है।
सममित तथा संक्रामक दोनों ही है।
Solution
किसी परिवार में बच्चों के अरिक्त समुच्चय तथा aRb, यदि a भाई है b का, द्वारा परिभाषित संबंध R पर विचार कीजिए, तो R संक्रामक है किन्तु सममित नहीं हैं।
व्याख्या:
aRb ⇒ a b का भाई है।
इसका मतलब यह नहीं है कि b भी a का भाई है क्योंकि b, a की बहन हो सकता है।
अत: R सममित नहीं है।
aRb ⇒ a b का भाई है।
and bRc ⇒ b c का भाई है।
अत: a, c का भाई है।
इसलिए, R संक्रामक है।
APPEARS IN
RELATED QUESTIONS
यदि f : R → R जहाँ f(x) = x2 - 3x + 2 द्वारा परिभाषित है तो f(f(x)) ज्ञात कीजिए |
मान लीजिए कि A = {0, 1, 2, 3} तथा A में एक संबंध R निम्नलिखित प्रकार से परिभाषित कीजिए:
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}
क्या R स्वतुल्य, सममित, संक्रामक है?
मान लीजिए कि f : R → R, f (x) = 4x – 3 ∀ x ∈ R द्वारा परिभषित एक फलन है, तो f –1 लिखिए।
क्या Z (पूर्णांकों का समुच्चय) में m * n = m – n + mn ∀ m, n ∈ Z द्वारा परिभाषित द्विआधारी-संक्रिया * कर्म -विनिमेय है?
यदि A = {a, b, c, d} तथा f = {a, b), (b, d), (c, a), (d, c)} तो सिद्ध कीजिए कि f एकैकी है तथा A से A पर आच्छादि है। f –1 भी ज्ञात कीजिए।
प्राकृत संख्याओं के समुच्चय N में एक संबंध R निम्नलिखित प्रकार से परिभाषित कीजिए:
∀ n, m ∈ N, nRm यदि n तथा में से प्रत्येक संख्या को 5 से विभाजित करने पर शेषफल 5 से कम बचता है, अर्थात, 0, 1, 2, 3 तथा 4 में से कोई एक संख्या। सिद्ध कीजिए कि R एक तुल्यता संबंध है। साथ ही R द्वारा निर्धारित युगलत: असयुंक्त उप-समुच्चयों को भी ज्ञात कीजिए।
मान लीजिए कि Q में परिभाषित * एक द्वि- आधारी संक्रिया है। ज्ञात कीजिए कि निम्नलिखित में से कौन-सा द्विआधारी संक्रिया साहचर्य है:
a, b ∈ Q के लिए, a * b = a – b
मान लीजिए कि Q में परिभाषित * एक द्वि- आधारी संक्रिया है। ज्ञात कीजिए कि निम्नलिखित में से कौन-सा द्विआधारी संक्रिया साहचर्य है:
a, b ∈ Q के लिए a * b = ab2
मान लीजिए कि L किसी समतल में स्थित सभी सरल रेखाओं के समुच्चय को निरूपित करता है। मान लीजिए कि एक संबंध R, नियम lRm यदि और केवल यदि l लम्ब है m पर, ∀ l, m ∈ L, द्वारा परिभाषित है। तब R
समुच्चय A में 3 अवयव हैं तथा समुच्चय B में 4 अवयव हैं, तो A से B में परिभाषित एकैक प्रतिचित्रणों की संख्या
मान लीजिए कि f : R → R, f (x) = x2 + 1 द्वारा परिभषित हैं, तो 17 तथा -3 के पूर्व प्रतिबिम्ब क्रमश:
f (x) = `sqrt(x^2 –3x +2)` द्वारा परिभषित फलन f : R → R का प्रांत ______ है।
मान लीजिए कि f: R → R फलन f(x) = 2x – 3 ∀ x ∈ R द्वारा परिभाषित है। f–1 लिखिए।
यदि फलन f: A → B तथा g: B → A, g o f = IA को संतुष्ट करता हैं, तो सिद्ध कीजिए कि f एकैक है तथा g आच्छादक है।
मान लीजिए f: R → R f(x) = `1/(2 - cosx)` x R द्वारा परिभाषित एक फलन है। तो , f का परिसर ज्ञात कीजिए।
यदि A = {1, 2, 3, 4}, तो A में निम्लिखित गुण वाले संबंध को परिभाषित कीजिए:
स्वतुल्य तथा संक्रामक हों किंतु सममित नहीं हों।
एक ऐसे प्रतिचित्रण का उदाहरण दीजिए जो -
न तो एकैकी है और न आच्छादक है।
मान लीजिए कि A = R – {3}, B = R – {1}, मान लीजिए कि f : A → B, f (x) = `(x - 2) /(x - 3)` ∀ x ∈ A द्वारा परिभाषित है, तो सिद्ध कीजिए कि f एकैकी आच्छादी है।
मान लीजिए A = [-1, 1]। तो विचार कीजिए कि क्या A में परिभाषित निम्नलिखित फलन एकैकी, आच्छादक या एकैकी आच्छादी हैं:
f(x) = `x/2`
मान लीजिए A = [-1, 1]। तो विचार कीजिए कि क्या A में परिभाषित निम्नलिखित फलनएकैकी, आच्छादक या एकैकी आच्छादी हैं:
g(x) = |x|
मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?
a * b = a – b ∀ a, b ∈ Q
मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?
a * b = a2 + b2 ∀ a, b ∈ Q
मान लीजिए कि T, यूक्लिडिय समतल में, सभी त्रिभुजों का समुच्चय है तथा मान लीजिए कि T में एक संबंध R इस प्रकार परिभाषित है कि aRb, यदि a सर्वांगसम है b के, ∀ a, b ∈ T, तो R ______
Z से Z में निम्नलिखित फलनों से कौन-से एकैकी आच्छादी हैं?
मान लीजिए f: R → R f(x) = x3 + 5 द्वारा परिभाषित एक फलन है, तो f–1(x) ______ है।
मान लीजिए f: A → B तथा g: B → C एकैकी आच्छादी फलन हैं, तो (g o f)-1 ______ है।
मान लीजिए कि f: R - `{3/5}` → R, f(x) = `(3x + 2)/(5x - 3)` द्वारा परिभाषित है, तो ______
मान लीजिए f: [0, 1] → [0, 1] f(x) =`[(x, "यदि" x "परिमेय है")/(1-x "यदि" x "अपरिमेय है")]`
द्वारा परिभाषित है, तो (f o f) x ______ है।
मान लीजिए f: `[2, oo)` → R f(x) = x2 - 4x + 5 द्वारा परिभाषित फलन है, तो f का परिसर ______ है।
फलनों का संयोजन क्रम-विनिमेय होता है।