Advertisements
Advertisements
Question
मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?
a * b = a2 + b2 ∀ a, b ∈ Q
Solution
यह देखते हुए कि * Q पर परिभाषित एक द्वि-आधारी संक्रिया है।
a * b = a2 + b2
b * a = b2 + a2
इस प्रकार, * क्रमविनिमेय है।
APPEARS IN
RELATED QUESTIONS
मान लीजिए कि f : R → R है तब निम्नलिखित प्रकार से परिभाषित चिन्ह फलन (Signum Function) है |
f(x) = `{(1"," x > 0), (0"," x = 0),(-1"," x < 0):}`
तथा g : R → R, g(x) = [x], द्वारा प्रदत्त महत्तम पूर्णांक फलन है, जहाँ [x], x से कम या x के बराबर पूर्णांक है, तो क्या fog तथा gof, अंतराल [0, 1] में संपाती (coincide) हैं?
मान लीजिए कि R = {(a, b) : संख्या 2, a – b को विभाजित करती है} द्वारा परिभाषित संबध R पूर्णांकों के समुच्चय Z में तुल्यता संबंध है।तुल्यता-वर्ग [0] लिखिए।
मान लीजिए कि फलन f : R → R , f (x) = 4x – 1, ∀ x ∈ R द्वारा परिभषित है, तो सिद्ध कीजिए कि f एकैकी है।
यदि f = {(5, 2), (6, 3)}, g = {(2, 5), (3, 6)}, तो f o g लिखिए।
मान लीजिए कि f : R → R, f (x) = 4x – 3 ∀ x ∈ R द्वारा परिभषित एक फलन है, तो f –1 लिखिए।
यदि A = {a, b, c, d} तथा f = {a, b), (b, d), (c, a), (d, c)} तो सिद्ध कीजिए कि f एकैकी है तथा A से A पर आच्छादि है। f –1 भी ज्ञात कीजिए।
मान लीजिए कि L किसी समतल में स्थित सभी सरल रेखाओं के समुच्चय को निरूपित करता है। मान लीजिए कि एक संबंध R, नियम lRm यदि और केवल यदि l लम्ब है m पर, ∀ l, m ∈ L, द्वारा परिभाषित है। तब R
समुच्चय A = {1, 2, 3} पर विचार कीजिए तथा R, A में छोटे से छोटा तुल्यता संबंध है, तो R = ______
अवयवों वाले समुच्चय A पर विचार कीजिए। A से स्वयं A पर एकैकी आच्छादक फलनों की कुल संख्या ______ है।
मान लीजिए कि A एक परिमित समुच्चय है, तो A से स्वयं A में प्रत्येक एकैक फलन आच्छादी नहीं है।
मान लीजिए कि N प्राकृत संख्याओं का समुच्चय है, तो a * b = a + b, ∀ a, b ∈ N द्वारा N में परिभाषित द्वि-आधारी संक्रिया * के लिए तत्समक अवयव है।
यदि f : R → R, f (x) = x2 – 3x + 2 द्वारा परिभाषित है, तो f (f (x)) लिखिए।
क्या क्रमित युग्मों का निम्लिखित समुच्चय, फलन हैं? यदि ऐसा है, तो जाँच कीजिए कि प्रतिचित्रण एकैक अथवा आच्छादि हैं कि नहीं हैं।
{(x, y): x एक व्यक्ति है, y माँ है x की}
मान लीजिए C सम्मिश्र संख्याओं का समुच्चय है। सिद्ध कीजिए कि f(z) = |z|, z C द्वारा दिया गया प्रतिचित्रण f: C → R न तो एकैकी है और न ही आच्छादक (आच्छादि) है।
दिया हुआ है कि A = {2, 3, 4}, B = {2, 5, 6, 7}। निम्नलिखित में से उदाहरण की रचना कीजिए :
A से B में एक एकैक प्रतिचित्रण।
एक ऐसे प्रतिचित्रण का उदाहरण दीजिए जो -
एकैकी नहीं है किंतु आच्छादक है।
निम्नलिखित में से N में एक संबंध परिभाषित करते है:
x y किसी पूर्णाक का वर्ग है, x, y ∈ N
निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।
परिभाषा का प्रयोग करते हुए, सिद्ध कीजिए कि फलन f: A→ B व्युत्क्रमणीय है यदि और केवल यदि f एकैकी तथा आच्छादक दोनो है।
फलन f , g: R → R क्रमशः f(x) = x2 + 3x + 1 तथा g(x) = 2x - 3 द्वारा परिभाषित हैं, तो f o f ज्ञात कीजिए:
मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?
a * b = a – b ∀ a, b ∈ Q
समुच्चय A = {1, 2, 3} में तुल्यता संबंधों की अधिकतम संख्या ______ है।
Q ~ {0} में a * b = ` (ab)/2` ∀ a, b ∈ Q ~ {0} प्रकार से परिभाषित द्वि-आधारी संक्रिया * का (के लिए) तत्सम अवयव ______ है।
यदि समुच्चय A में 5 अवयव हैं तथा समुच्चय B में 6 अवयव हैं, तो A से B में एकैकी तथा आच्छादक प्रतिचित्रणों की संख्या ______ है।
मान लीजिए कि f: R → R f(x) = tan x द्वारा दत्त है, तो f-1(1) _______ है।
यदि f(x) = (4 - (x - 7)3}, तो f–1(x) = ______।
एक पूर्णांक m एक अन्य पूर्णांक n से संबंधित कहालाता है, यदि m, एक पूर्णांकीय गुणज है n का। Z में इस प्रकार का संबंध स्वतुल्य, सममित तथा संक्रामक होता है।
किसी समुच्चय में किसी द्वी-आधारी संक्रिया का तत्समक अवयव सदैव होता है।