Advertisements
Advertisements
Question
मान लीजिए कि R = {(a, b) : संख्या 2, a – b को विभाजित करती है} द्वारा परिभाषित संबध R पूर्णांकों के समुच्चय Z में तुल्यता संबंध है।तुल्यता-वर्ग [0] लिखिए।
Solution
[0] = {0, ± 2, ± 4, ± 6,...}
APPEARS IN
RELATED QUESTIONS
फलन f(x) = f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)` का प्रांत ज्ञात कीजिए।
मान लीजिए कि A = {0, 1, 2, 3} तथा A में एक संबंध R निम्नलिखित प्रकार से परिभाषित कीजिए:
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}
क्या R स्वतुल्य, सममित, संक्रामक है?
क्या Z (पूर्णांकों का समुच्चय) में m * n = m – n + mn ∀ m, n ∈ Z द्वारा परिभाषित द्विआधारी-संक्रिया * कर्म -विनिमेय है?
मान लीजिए कि N प्राकृत संख्याओं के समुच्चय है तथा f : N → N, f (n) = 2n + 3 ∀ n ∈ N द्वारा परिभाषित एक फलन है, तो f
वास्तविक संख्याओं x तथा y के लिए परिभाषित कीजिए कि xRy, यदि और केवल यदि x - y + `sqrt(2)` एक अपरिमेय संख्या है, तो संबंध R
मान लीजिए कि Z पूर्णांकों का समुच्चय है तथा R, Z में परिभाषित एक संबंध इस प्रकार है aRb, कि यदि a – b भाज्य है 3 से, तो R समुच्चय Z को ______ युगलत: असंयुक्त उप-समुच्चयों में विभाजन करता है।
समुच्चय A = {1, 2, 3} तथा R = {(1, 2), (1, 3)} पर विचार कीजिए। R एक संक्रामक संबंध है।
समुच्चय A, B तथा C के लिए, मान लीजिए कि f : A → B, g : B → C फलन इस प्रकार के हैं कि फलन g o f आच्छादी है तो f तथा g भी आच्छादी हैं।
मान लीजिए कि N प्राकृत संख्याओं का समुच्चय है, तो a * b = a + b, ∀ a, b ∈ N द्वारा N में परिभाषित द्वि-आधारी संक्रिया * के लिए तत्समक अवयव है।
मान लीजिए कि D, f(x) = `sqrt(25 - x^2)` द्वारा परिभाषित, वास्तविक मान फलन f का प्रांत है तो D को लिखिए।
मान लीजिए कि f , g : R → R क्रमश: f (x) = 2x + 1 तथा g (x) = x2 – 2, ∀ x ∈ R द्वारा परिभाषित हैं, तो g o f ज्ञात कीजिए।
यदि f : R → R, f (x) = x2 – 3x + 2 द्वारा परिभाषित है, तो f (f (x)) लिखिए।
क्या g = {(1, 1), (2, 3), (3, 5), (4, 7)} एक फलन है? यदि g, g (x) = αx + β द्वारा वर्णित है, तो α तथा β का मान क्या निर्धारित होना चाहिए?
मान लीजिए फलन f: R → R, f(x) = cosx, ∀ x ∈ R द्वारा परिभाषित है। सिद्ध कीजिए कि f न तो एकैकी है और न ही आच्छादक (आच्छादि) है।
मान लीजिए f: R → R f(x) = `1/(2 - cosx)` x R द्वारा परिभाषित एक फलन है। तो , f का परिसर ज्ञात कीजिए।
यदि A = {1, 2, 3, 4}, तो A में निम्लिखित गुण वाले संबंध को परिभाषित कीजिए:
स्वतुल्य, सममित तथा संक्रामक हों।
मान लीजिए कि A = R – {3}, B = R – {1}, मान लीजिए कि f : A → B, f (x) = `(x - 2) /(x - 3)` ∀ x ∈ A द्वारा परिभाषित है, तो सिद्ध कीजिए कि f एकैकी आच्छादी है।
न लीजिए A = [-1, 1]। तो विचार कीजिए कि क्या A में परिभाषित निम्नलिखित फलन एकैकी, आच्छादक या एकैकी आच्छादी हैं:
k(x) = x2
निम्नलिखित में से N में एक संबंध परिभाषित करते है:
x y किसी पूर्णाक का वर्ग है, x, y ∈ N
निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।
फलन f , g: R → R क्रमशः f(x) = x2 + 3x + 1 तथा g(x) = 2x - 3 द्वारा परिभाषित हैं, तो g o f ज्ञात कीजिए:
फलन f , g: R → R क्रमशः f(x) = x2 + 3x + 1 तथा g(x) = 2x - 3 द्वारा परिभाषित हैं, तो f o f ज्ञात कीजिए:
मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?
a * b = a – b ∀ a, b ∈ Q
मान लीजिए कि R में द्वारा द्वि-आधारी *, a * b = 1 + ab, ∀ a, b ∈ R तो संक्रिया *
मान लीजिए कि T, यूक्लिडिय समतल में, सभी त्रिभुजों का समुच्चय है तथा मान लीजिए कि T में एक संबंध R इस प्रकार परिभाषित है कि aRb, यदि a सर्वांगसम है b के, ∀ a, b ∈ T, तो R ______
यदि समुच्चय {1, 2, 3} में R = {(1, 2)} द्वारा परिभाषित एक संबंध R है, तो R ______ है।
मान लीजिए f: N → R f(x) = `(2x - 1)/2` द्वारा परिभाषित एक फलन है तथा g: Q → R g(x) = x + 2 द्वारा परिभाषित एक अन्य फलन है। तो (g o f) ` 3/2` ______ है।
मान लीजिए f: R → R, f(x) = `{{:(2x",", x > 3),(x^2",", 1 < x ≤ 3),(3x",", x ≤ 1):}` द्वारा परिभाषित है, तो f (-1) + f (2) + f (4) ______ है।
प्रत्येक फलन व्युत्क्रमणीय होता है।