English

मान लीजिए A = [-1, 1]। तो विचार कीजिए कि क्या A में परिभाषित निम्नलिखित फलन एकैकी, आच्छादक या एकैकी आच्छादी हैं: f(x) = x2 - Mathematics (गणित)

Advertisements
Advertisements

Question

मान लीजिए A = [-1, 1]। तो विचार कीजिए कि क्या A में परिभाषित निम्नलिखित फलन एकैकी, आच्छादक या एकैकी आच्छादी हैं:

f(x) = `x/2`

Sum

Solution

दिया गया है, A = [–1, 1]

f: [–1, 1] → [–1, 1], f(x) = `x/2`

माना f(x1) = f(x2)

`x_1/2` = x2

अतः f(x) एकैकी है।

साथ ही x ∈ [–1, 1]

`x/2` = f(x) = `[-1/2, 1/2]`

अतः परिसर सह-प्रदेश 'A' का एक उपसमुच्चय है।

अतः f(x) आच्छादक नहीं है।

इसलिए, f(x) विशेषण नहीं है।

shaalaa.com
संबंध एवं फलन
  Is there an error in this question or solution?
Chapter 1: संबंध एव फलन - प्रश्नावली [Page 13]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 1 संबंध एव फलन
प्रश्नावली | Q 21. (i) | Page 13

RELATED QUESTIONS

यदि f(x) = x2 तो `(f(1.1) - f(1))/((1.1 - 1))` ज्ञात कीजिए।


फलन f(x) = f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)` का प्रांत ज्ञात कीजिए।


यदि f = {(5, 2), (6, 3)}, g = {(2, 5), (3, 6)}, तो f o g लिखिए।


मान लीजिए कि Q में परिभाषित * एक द्वि- आधारी संक्रिया है। ज्ञात कीजिए कि निम्नलिखित में से कौन-सा द्विआधारी संक्रिया साहचर्य है:

a, b ∈ Q के लिए, a * b = a – b


मान लीजिए कि Q में परिभाषित * एक द्वि- आधारी संक्रिया है। ज्ञात कीजिए कि निम्नलिखित में से कौन-सा द्विआधारी संक्रिया साहचर्य है:

a, b ∈ Q के लिए a * b = a – b + ab


मान लीजिए कि N प्राकृत संख्याओं के समुच्चय है तथा f : N → N, f (n) = 2n + 3 ∀ n ∈ N द्वारा परिभाषित एक फलन है, तो f


मान लीजिए कि f: R → R, f(x) = 3x – 4, द्वारा परिभषित हैं, तो f–1(x)


समुच्चय A = {1, 2, 3} पर विचार कीजिए तथा R, A में छोटे से छोटा तुल्यता संबंध है, तो R = ______


अवयवों वाले समुच्चय A पर विचार कीजिए। A से स्वयं A पर एकैकी आच्छादक फलनों की कुल संख्या ______ है।


समुच्चय A, B तथा C के लिए, मान लीजिए कि f : A → B, g : B → C फलन इस प्रकार के हैं कि फलन g o f एकैक है तो f तथा g दोनों ही एकैक फलन हैं।


मान लीजिए कि N प्राकृत संख्याओं का समुच्चय है, तो a * b = a + b, ∀ a, b ∈ N द्वारा N में परिभाषित द्वि-आधारी संक्रिया * के लिए तत्समक अवयव है।


क्या g = {(1, 1), (2, 3), (3, 5), (4, 7)} एक फलन है? यदि g, g (x) = αx + β द्वारा वर्णित है, तो α तथा β का मान क्या निर्धारित होना चाहिए?


मान लीजिए f: R → R f(x) = `1/(2 - cosx)` x R द्वारा परिभाषित एक फलन है। तो , f का परिसर ज्ञात कीजिए।


मान लीजिए n एक निश्चित (स्थिर) धन पूर्णांक है। Z में एक संबंध R निम्लिखित प्रकार से परिभाषित कीजिए : ∀ a, b ∈ Z, aRb यदि और केवल यदि a - b, भाज्य है n से। सिद्ध किजिए कि R एक तुल्यता संबंध है।


मान लीजिए कि R, प्राकृत संख्याओं के समुच्चय N में निम्नलिखित प्रकार से परिभाषित एक संबंध है।

R = {(x, y): x ∈ N, y ∈ N, 2x + y = 41}। संबंध R का प्रांत तथा परिसर ज्ञात कीजिए। साथ ही सत्यापित (जाँच) कीजिए कि क्या R स्वतुल्य, सममित तथा संक्रामक है।


दिया हुआ है कि A = {2, 3, 4}, B = {2, 5, 6, 7}। निम्नलिखित में से उदाहरण की रचना कीजिए :

A से B में एक एकैक प्रतिचित्रण।


एक ऐसे प्रतिचित्रण का उदाहरण दीजिए जो -

न तो एकैकी है और न आच्छादक है।


मान लीजिए कि A = R – {3}, B = R – {1}, मान लीजिए कि f : A → B, f (x) = `(x - 2) /(x - 3)` ∀ x ∈ A द्वारा परिभाषित है, तो सिद्ध कीजिए कि f एकैकी आच्छादी है।


मान लीजिए A = [-1, 1]। तो विचार कीजिए कि क्या A में परिभाषित निम्नलिखित फलनएकैकी, आच्छादक या एकैकी आच्छादी हैं:

g(x) = |x|


मान लीजिए A = [-1, 1]। तो विचार कीजिए कि क्या A में परिभाषित निम्नलिखित फलन एकैकी, आच्छादक या एकैकी आच्छादी हैं:

h(x) = x|x|


निम्नलिखित में से N में एक संबंध परिभाषित करते है:

x + 4y = 10, x, y ∈ N

निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।


मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?

a * b = a – b ∀ a, b ∈ Q


मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?

a * b = a2 + b2 ∀ a, b ∈ Q


मान लीजिए f: R → R, f(x) = `1/x` x ∈ R द्वारा परिभाषित है, तो f ______ है।


मान लीजिए f: N → R f(x) = `(2x - 1)/2` द्वारा परिभाषित एक फलन है तथा g: Q → R g(x) = x + 2 द्वारा परिभाषित एक अन्य फलन है। तो (g o f) ` 3/2` ______ है।


मान लीजिए कि A = {1, 2, 3, 4, 5} में एक संबंध R = {(a, b) : |a2 - b2| <8 द्वारा परिभाषित है, तो R _______ द्वारा व्यक्त है।


मान लीजिए कि f = {(1, 2), (3, 5), (4, 1) तथा g = {(2, 3), (5, 1), (1, 3)}। तो g o f = ______ तथा f o g = ______।


मान लीजिए कि f: R → R, f(x) = `x/sqrt(1 + x^2)` द्वारा परिभाषित है, तो ( f o f o f ) (x) = ______।


मान लीजिए f: R → R, f(x) = sin (3x+2) ∀ x ∈ R द्वारा परिभाषित एक फलन है। तो f व्युत्क्रमणीय है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×