Advertisements
Advertisements
प्रश्न
Make x the subject of the formula a = `1 - (2"b")/("cx" - "b")`. Find x, when a = 5, b = 12 and
उत्तर
a = `1 - (2"b")/("cx" - "b")`
⇒ a - 1 = `- (2"b")/("cx" - "b")`
⇒ (a - 1)(cx - b) + 2b = 0
⇒ acx - ab - cx + 3b = 0
⇒ x(ac - c) + b(3 - a) = 0
⇒ xc(a - 1) = -b(3 - a)
⇒ x = `("b"("a" - 3))/("c"("a" - 1)`
Substituting a = 5, b = 12 and c = 2, we get
x = `(12(5 - 3))/(2(5 - 1)`
= `(12 xx 2)/(2 xx 4)`
= 3.
APPEARS IN
संबंधित प्रश्न
The area A of a circular ring is π times the difference between the squares of outer radius R and inner radius r. Make a formula for this statement.
Make L the subject of formula T = `2pisqrt("L"/"G")`
Make a the subject of formula S = `("a"("r"^"n" - 1))/("r" - 1)`
Make A the subject of formula R = `("m"_1"B" + "m"_2"A")/("m"_1 + "m"_2)`
Make h the subject of the formula R = `"h"/(2)("a" - "b")`. Find h when R = 108, a = 16 and b = 12.
Make x the subject of the formula y = `(1 - x^2)/(1 + x^2)`. Find x, when y = `(1)/(2)`
Make z the subject of the formula y = `(2z + 1)/(2z - 1)`. If x = `(y + 1)/(y - 1)`, express z in terms of x, and find its value when x = 34.
Make c the subject of the formula a = b(1 + ct). Find c, when a = 1100, b = 100 and t = 4.
"The volume of a cylinder V is equal to the product of π and square of radius r and the height h". Express this statement as a formula. Make r the subject formula. Find r, when V = 44cm3, π = `(22)/(7)`, h = 14cm.
If s = `"n"/(2)[2"a" + ("n" - 1)"d"]`, the n express d in terms of s, a and n. find d if n = 3, a = n + 1 and s = 18.