Advertisements
Advertisements
प्रश्न
Make x the subject of the formula a = `1 - (2"b")/("cx" - "b")`. Find x, when a = 5, b = 12 and
उत्तर
a = `1 - (2"b")/("cx" - "b")`
⇒ a - 1 = `- (2"b")/("cx" - "b")`
⇒ (a - 1)(cx - b) + 2b = 0
⇒ acx - ab - cx + 3b = 0
⇒ x(ac - c) + b(3 - a) = 0
⇒ xc(a - 1) = -b(3 - a)
⇒ x = `("b"("a" - 3))/("c"("a" - 1)`
Substituting a = 5, b = 12 and c = 2, we get
x = `(12(5 - 3))/(2(5 - 1)`
= `(12 xx 2)/(2 xx 4)`
= 3.
APPEARS IN
संबंधित प्रश्न
Make a the subject of formula S = `("a"("r"^"n" - 1))/("r" - 1)`
Make y the subject of formula W = `"pq" + (1)/(2)"wy"^2`
Make N the subject of formula I = `"NG"/("R" + "Ny")`
Make R2 the subject of formula R2 = 4π(R12 - R22)
Make c the subject of formula x = `(-"b" ± sqrt("b"^2 - 4"ac"))/(2"a")`
If A = pr2 and C = 2pr, then express r in terms of A and C.
If 3ax + 2b2 = 3bx + 2a2, then express x in terms of a and b. Also, express the result in the simplest form.
If b = `(2"a")/("a" - 2)`, and c = `(4"b" - 3)/(3"b" + 4)`, then express c in terms of a.
The total energy E possess by a body of Mass 'm', moving with a velocity 'v' at a height 'h' is given by: E = `(1)/(2) "m" "u"^2 + "mgh"`. Find m, if v = 2, g = 10, h = 5 and E = 104.
If s = `"n"/(2)[2"a" + ("n" - 1)"d"]`, the n express d in terms of s, a and n. find d if n = 3, a = n + 1 and s = 18.