Advertisements
Advertisements
Question
Make x the subject of the formula a = `1 - (2"b")/("cx" - "b")`. Find x, when a = 5, b = 12 and
Solution
a = `1 - (2"b")/("cx" - "b")`
⇒ a - 1 = `- (2"b")/("cx" - "b")`
⇒ (a - 1)(cx - b) + 2b = 0
⇒ acx - ab - cx + 3b = 0
⇒ x(ac - c) + b(3 - a) = 0
⇒ xc(a - 1) = -b(3 - a)
⇒ x = `("b"("a" - 3))/("c"("a" - 1)`
Substituting a = 5, b = 12 and c = 2, we get
x = `(12(5 - 3))/(2(5 - 1)`
= `(12 xx 2)/(2 xx 4)`
= 3.
APPEARS IN
RELATED QUESTIONS
The volume V, of a cone is equal to one third of π times the cube of the radius. Find a formula for it.
Make a formula for the statement:"The number of diagonals, d, that can be drawn from one vertex of an n sided polygon to all the other vertices is equal to the number of sides of the polygon less 3"
Make N the subject of formula I = `"NG"/("R" + "Ny")`
If 3ax + 2b2 = 3bx + 2a2, then express x in terms of a and b. Also, express the result in the simplest form.
Make h the subject of the formula R = `"h"/(2)("a" - "b")`. Find h when R = 108, a = 16 and b = 12.
Make a the subject of the formula S = `"n"/(2){2"a" + ("n" - 1)"d"}`. Find a when S = 50, n = 10 and d = 2.
Make x the subject of the formula y = `(1 - x^2)/(1 + x^2)`. Find x, when y = `(1)/(2)`
Make I the subject of the following M = `"L" /"F"(1/2"N" - "C") xx "I"`. Find I, If M = 44, L = 20, F = 15, N = 50 and C = 13.
The pressure P and volume V of a gas are connected by the formula PV = C; where C is a constant. If P = 4 when V = `2(1)/(2)`; find the value of P when V = 4?
The total energy E possess by a body of Mass 'm', moving with a velocity 'v' at a height 'h' is given by: E = `(1)/(2) "m" "u"^2 + "mgh"`. Make 'm' the subject of formula.