हिंदी

नाज़िमा एक नदी की धारा में मछलियाँ पकड़ रही है। उसकी मछली पकड़ने वाली छड़ का सिरा पानी की सतह से 1.8 m ऊपर है तथा डोरी के निचले सिरे से लगा काँटा पानी के सतह पर इस प्रकार स्थित है कि उसकी - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

नाज़िमा एक नदी की धारा में मछलियाँ पकड़ रही है। उसकी मछली पकड़ने वाली छड़ का सिरा पानी की सतह से 1.8 m ऊपर है तथा डोरी के निचले सिरे से लगा काँटा पानी के सतह पर इस प्रकार स्थित है कि उसकी नाज़िमा से दूरी 3.6 m है और छड़ के सिरे के ठीक नीचे पानी के सतह पर स्थित बिंदु से उसकी दूरी 2.4 m है। यह मानते हुए कि उसकी डोरी (उसकी छड़ के सिरे से काँटे तक) तनी हुई है, उसने कितनी डोरी बाहर निकाली हुई है (देखिए आकृति)? यदि वह डोरी को 5 cm/s की दर से अंदर खींचे, तो 12 सेकंड के बाद नाज़िमा की काँटे से क्षैतिज दूरी कितनी होगी?

 

योग

उत्तर

मान लीजिए कि नाजिया की प्रारम्भिक स्थिति P पर छड़ का सिरा Q पर, काँटे की स्थिति R पर तथा Q से PR पर डाले गये लम्ब के पाद की स्थिति M पर है। तब प्रश्नानुसार,

PR = 3.6, QM = 1.8 m एवं RM = 2.4 m

PM = PR – RM = 3.6 – 2.4 = 1.2 m

मान लीजिए कि डोरी की वर्तमान लम्बाई = l m तो समकोण

∆QMR में, ∠QMR समकोण है

QR2 = RM2 + QM2 [पाइथागोरस प्रमेय से]

l2 = (2.4)2 + (1.8)2

= 5.76 + 3.24

= 9.00

l = `sqrt9` = 3 m

5 cm/s की चाल से 12 s में डोरी की लम्बाई में कमी

= 12 × 5

= 60 cm

= 0.6 m

डोरी की नई लम्बाई QS = 3.00 – 0.60

= 2.40 m

अब समकोण ∆QMS में, ∠QMS समकोण है

(SM)2 = (QS)2 – (QM)2 [पाइथागोरस प्रमेय से]

(SM)2 = (2.4)2 – (1.8)2

= 5.76 – 3.24

= 2.52

SM = `sqrt2.52`

= 1.59 m

नाजिया की काँटे से नवीन दूरी = SP = SM + MP

= 1.59 + 1.2

= 2.79 m

अतः नाजिया की काँटे से अभीष्ट दूरी = 2.79 m है।

shaalaa.com
पाइथागोरस प्रमेय
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: त्रिभुज - अभ्यास 6.6 (ऐच्छिक)* [पृष्ठ १६८]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
अध्याय 6 त्रिभुज
अभ्यास 6.6 (ऐच्छिक)* | Q 10. | पृष्ठ १६८

संबंधित प्रश्न

आकृति में ABD एक समकोण त्रिभुज है जिसका कोण A समकोण है तथा AC ⊥ BD है। दर्शाइए कि

 

AB2 = BC.BD


10 m लंबी एक सीढ़ी एक दीवार पर टिकाने पर भूमि से 8 m की ऊँचाई पर स्थित एक खिड़की तक पहुँचती है। दीवार के आधार से सीढ़ी के निचले सिरे की दूरी ज्ञात कीजिए।


किसी त्रिभुज ABC के शीर्ष A से BC पर डाला गया लम्ब BC को बिंदु D पर इस प्रकार प्रतिच्छेद करता है कि DB = 3CD है (देखिए आकृति) सिद्ध कीजिए कि 2AB2 = 2AC2 + BC2 है।

 


आकृति में ABC एक त्रिभुज है जिसमें ∠ABC < 90° हैं तथा AD ⊥ BC है। सिद्ध कीजिए कि AC2 = AB2 + BC2 – 2BC.BD है।

 


10 m लंबी एक सीढ़ी, जो एक उर्ध्वाधर दीवार के सहारे टिकी हुई है, के निचले सिरे की दीवार के आधार से दूरी 6 m है। दीवार पर उस बिंदु की ऊँचाई ज्ञात कीजिए, जहाँ तक सीढ़ी का ऊपरी सिरा पहुँचता है।


शहर A से शहर B तक जाने के लिए एक मार्ग शहर C से होकर इस प्रकार जाता है कि AC ⊥ CB है, AC = 2x km और CB = 2(x + 7) km है। दोनों शहरों A और B को सीधा जोड़ने के लिए, एक 26 km लंबे राजमार्ग बनाने की एक योजना है। ज्ञात कीजिए कि राजमार्ग बन जाने के बाद, शहर A से शहर B तक जाने में कितनी दूरी कम चलनी पड़ेगी। 


आकृति में PQR एक समकोण त्रिभुज है, जिसका ∠Q समकोण है तथा QS ⊥ PR है। यदि PQ = 6 cm और PS = 4 cm है, तो QS, RS और QR ज्ञात कीजिए। 


∆PQR में, PD ⊥ QR इस प्रकार है कि D भुजा QR पर स्थित है। यदि PQ = a, PR = b, QD = c और DR = d है, तो सिद्ध कीजिए कि (a + b)(a – b) = (c + d)(c – d) है।


किसी चतुर्भुज ABCD में, ∠A + ∠D = 90° है। सिद्ध कीजिए कि AC2 + BD2 = AD2 + BC2 है।

[संकेत : AB और DC को E पर मिलने के लिए बढ़ाइए]।


एक समलंब ABCD, जिसमें AB || DC है, के विकर्णों AC और BD का प्रतिच्छेद बिंदु O है। O से होकर एक रेखाखंड PQ भुजा AB के समांतर खींचा गया है, जो AD को P और BC को Q पर मिलता है। सिद्ध कीजिए कि PO = QO है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×