हिंदी

आकृति में त्रिभुज ABC की भुजा BC पर एक बिंदु D इस प्रकार स्थित है कि BDCDABACBDCD=ABAC है। सिद्ध कीजिए कि AD, कोण BAC का समद्विभाजक है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

आकृति में त्रिभुज ABC की भुजा BC पर एक बिंदु D इस प्रकार स्थित है कि `"BD"/"CD" = "AB"/"AC"` है। सिद्ध कीजिए कि AD, कोण BAC का समद्विभाजक है।

 

प्रमेय

उत्तर

दिया है: ∆ABC की भुजा BC पर बिन्दु D इस प्रकार कि
`"BD"/"CD" = "AB"/"AC"` …(1)

रचना: AD को बढ़ाइए। CE || AD रेखा खींचिए जो AD को बिन्दु E पर प्रतिच्छेद करती है।

अब ∆ABD और ∆ECD में,

∠ABD = ∠ECD

[AB || CE एवं BD तिर्यक रेखा है।]

∠ADB = ∠EDC [शीर्षाभिमुख कोण है]

∆ABD ∼ ∆ECD [AA समरूपता]

`"BD"/"CD" = "AB"/"EC"` …(2)
[समरूप त्रिभुजों के प्रगुण]

`"AB"/"AC" = "AB"/"EC"`
[समीकरण (1) एवं (2) से]

⇒ AC = EC

⇒ ∠CAD = ∠CED …(3) [बराबर भुजाओं के सम्मुख कोण]

लेकिन ∠BAD = ∠CED …(4) [समरूप ∆ABD एवं ∆ECD के संगत कोण हैं।

∴ ∠BAD = ∠CAD [समीकरण (3) एवं (4) से]

अतः AD कोण BAC का समद्विभाजक है।

इति सिद्धम्

shaalaa.com
त्रिभुजों की समरूपता के लिए कसौटियाँ
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: त्रिभुज - अभ्यास 6.6 (ऐच्छिक)* [पृष्ठ १६८]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
अध्याय 6 त्रिभुज
अभ्यास 6.6 (ऐच्छिक)* | Q 9. | पृष्ठ १६८

संबंधित प्रश्न

बताइए कि आकृति में दिए त्रिभुजों के युग्मों में से कौन-कौन से युग्म समरूप हैं। उस समरूपता कसौटी को लिखिए जिसका प्रयोग आपने उत्तर देने में किया है तथा साथ ही समरूप त्रिभुजों को सांकेतिक रूप में व्यक्त कीजिए।

 


बताइए कि आकृति में दिए त्रिभुजों के युग्मों में से कौन-कौन से युग्म समरूप हैं। उस समरूपता कसौटी को लिखिए जिसका प्रयोग आपने उत्तर देने में किया है तथा साथ ही समरूप त्रिभुजों को सांकेतिक रूप में व्यक्त कीजिए।


बताइए कि आकृति में दिए त्रिभुजों के युग्मों में से कौन-कौन से युग्म समरूप हैं। उस समरूपता कसौटी को लिखिए जिसका प्रयोग आपने उत्तर देने में किया है तथा साथ ही समरूप त्रिभुजों को सांकेतिक रूप में व्यक्त कीजिए।

 


आकृति में, ABC और AMP दो समकोण त्रिभुज हैं, जिनके कोण B और M समकोण हैं। सिद्ध कीजिए कि:

  1. ΔABC ∼ ΔAMP
  2. `"CA"/"PA" = "BC"/"MP"`

एक त्रिभुज ABC की भुजाएँ AB और BC तथा माध्यिका AD एक अन्य त्रिभुज PQR की क्रमशः भुजाओं PQ और QR तथा माध्यिका PM के समानुपाती है (देखिए आकृति)। दर्शाइए कि ∆ABC ∼ ∆PQR है।

 


AD और PM त्रिभुओं ABC और PQR की क्रमशः माध्यिकाएँ हैं, जबकि ∆ABC ∼ ∆PQR है। सिद्ध कीजिए कि `("AB")/("PQ") = ("AD")/("PM")` है।


क्या यह कहना सत्य है कि यदि दो त्रिभुज में, एक त्रिभुज का एक कोण दूसरे त्रिभुज के एक कोण के बराबर है तथा एक त्रिभुज की दो भुजाएँ दूसरे त्रिभुज की दो भुजाओं के समानुपाती हैं, तो त्रिभुज समरूप होंगे? अपने उत्तर के लिए कारण दीजिए।


दो समरूप त्रिभुजों की संगत भुजाएँ 2 : 3 के अनुपात में हैं। यदि छोटे त्रिभुज का क्षेत्रफल 48 cm2 है, तो बड़े त्रिभुज का क्षेत्रफल ज्ञात कीजिए। 


आकृति में, यदि ∠ACB = ∠CDA, AC = 8 cm और AD = 3 cm है, तो BD ज्ञात कीजिए। 


यह दिया है कि ΔABC ~ ΔEDF इस प्रकार है कि AB = 5 cm, AC = 7 cm, DF = 15 cm और DE = 12 cm है। इन त्रिभुजों की शेष भुजाओं की लंबाइयाँ ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×