हिंदी

निम्नलिखित आकृति में, यदि AOB एक व्यास है और ∠ADC = 120° है, तो ∠CAB = 30° है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित आकृति में, यदि AOB एक व्यास है और ∠ADC = 120° है, तो ∠CAB = 30° है। 

विकल्प

  • सत्य

  • असत्य

MCQ
सत्य या असत्य

उत्तर

यह कथन सत्य है।

स्पष्टीकरण -

माना AOB वृत्त का व्यास है।


दिया गया है - ∠ADC = 120°

सबसे पहले, CB से जुड़ें।

फिर, हमारे पास एक चक्रीय चतुर्भुज ABCD है।

चूँकि एक चक्रीय चतुर्भुज के सम्मुख कोणों का योग 180° होता है, इसलिए

∠ADC + ∠ABC = 180°

⇒ 120° + ∠ABC = 180°

⇒ ∠ABC = 180° – 120°

⇒ ∠ABC = 60°

अब AC से जुड़ें।

साथ ही, व्यास वृत्त के साथ एक समकोण बनाता है,

∴ ∆ABC में, ∠ACB = 90° है।

अब, त्रिभुज के कोण गुण के अनुसार त्रिभुज के सभी कोणों का योग 180° होता है।

∴ ∠CAB + ∠ABC + ∠ACB = 180°

⇒ ∠CAB + 60° + 90° = 180°

⇒ ∠CAB = 180° – 90° – 60°

⇒ ∠CAB = 30°

shaalaa.com
एक वृत्त के चाप द्वारा अंतरित कोण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: वृत्त - प्रश्नावली 10.2 [पृष्ठ १०३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
अध्याय 10 वृत्त
प्रश्नावली 10.2 | Q 10. | पृष्ठ १०३

संबंधित प्रश्न

आकृति में, केंद्र O वाले एक वृत्त पर तीन बिन्दु A, B और C इस प्रकार हैं कि ∠BOC = 30तथा ∠AOB = 60है। यदि चाप ABC के अतिरिक्त वृत्त पर D एक बिंदु है, तो ∠ADC ज्ञात कीजिए।


यदि एक वृत्त के चाप AXB और CYD सर्वांगसम हैं तो AB और CD का अनुपात ज्ञात कीजिए।


यदि वृत्त की दो जीवाओं के मध्य-बिंदुओं को मिलाने वाला रेखाखंड वृत्त के केंद्र से होकर जाता है, तो सिद्ध कीजिए कि दोनों जीवाएँ समांतर है।


निम्नलिखित आकृति में, AOB वृत्त का व्यास है तथा C, D और E अर्धवृत्त पर स्थित कोई तीन बिंदु हैं। ∠ACD + ∠BED का मान ज्ञात कीजिए।


निम्नलिखित आकृति में, ∠OAB = 30° और ∠OCB = 57° है। ∠BOC और ∠AOC ज्ञात कीजिए।


सिद्ध कीजिए कि एक त्रिभुज के किसी कोण का समद्विभाजक और उसकी सम्मुख भुजा का लंब समद्विभाजक, यदि प्रतिच्छेद करते हैं तो, उस त्रिभुज के परिवृत्त पर प्रतिच्छेद करते हैं।


यदि ABC किसी वृत्त के अंतर्गत एक समबाहु त्रिभुज है तथा P लघु चाप BC पर स्थित कोई बिंदु है, जो B या C के संपाती नहीं है, तो सिद्ध कीजिए कि PA कोण BPC का समद्विभाजक हैं।


निम्नलिखित आकृति में, AB और CD एक वृत्त की दो जीवाएँ हैं, जो E पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि AEC = `1/2` (चाप CXA द्वारा केंद्र पर अंतरित कोण + चाप DYB द्वारा केंद्र पर अंतरित कोण) है।


एक वृत्त की दो बराबर AB और CD जीवाएँ बढ़ाने पर बिंदु P पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि PB = PD है।


AB और AC त्रिज्या r वाले एक वृत्त की दो जीवाएँ इस प्रकार हैं कि AB = 2AC है। यदि p और q क्रमश : केंद्र से AB और AC की दूरियाँ हैं, तो सिद्ध कीजिए कि 4q2 = p2 + 3r2 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×