Advertisements
Advertisements
प्रश्न
निम्नलिखित में बहुपद् ज्ञात कीजिए, जिनके शून्यकों के क्रमशः योग और गुणनफल दिए हुए हैं। साथ ही, गुणनखंडन द्वारा, इन बहुपदों के शून्यक भी ज्ञात कीजिए :
`(-3)/(2sqrt5), -1/2`
उत्तर
शून्यों का योग = `-3/2 sqrt(5)x`
शून्यों का गुणनफल = `- 1/2`
P(x) = x2 – (शून्यों का योग) + (शून्यों का गुणनफल)
फिर, P(x) = `x^2 - (-3/2 sqrt(5)x) - 1/2`
P(x) = `2sqrt(5)x^2 + 3x - sqrt(5)`
मध्य पद विभाजन विधि का उपयोग करते हुए,
`2sqrt(5)x^2 + 3x - sqrt(5)` = 0
`2sqrt(5)x^2 + (5x - 2x) - sqrt(5)` = 0
`2sqrt(5)x^2 - 5x + 2x - sqrt(5)` = 0
`sqrt(5)x (2x + sqrt(5)) - (2x + sqrt(5))` = 0
`(2x + sqrt(5))(sqrt(5)x - 1)` = 0
`\implies` x = `1/sqrt(5), -sqrt(5)/2`
APPEARS IN
संबंधित प्रश्न
निम्न द्विघात बहुपद के शून्यक ज्ञात कीजिए और शून्यकों तथा गुणांकों के बीच के संबंध की सत्यता की जाँच कीजिए:
4s2 - 4s + 1
निम्न द्विघात बहुपद के शून्यक ज्ञात कीजिए और शून्यकों तथा गुणांकों के बीच के संबंध की सत्यता की जाँच कीजिए:
4u2 + 8u
एक त्रिघात बहुपद प्राप्त कीजिए जिसके शून्यकों का योग, दो शून्यकों को एक साथ लेकर उनके गुणनफलों का योग तथा तीनों शून्यकों के गुणनफल क्रमशः 2, -7, -14 हों।
शून्यक –2 और 5 वाले बहुपदों की संख्या है
यदि एक द्विघात बहुपद ax2 + bx + c के दोनों शून्यक धनात्मक हैं, तो a, b और c में से सभी का समान चिन्ह होता हैं।
यदि एक त्रिघात बहुपद के दो शून्यकों में से प्रत्येक शून्य है, तो इसके रैखिक और अचर पद नहीं हो सकते।
यदि एक त्रिघात बहुपद के सभी शून्यक ऋणात्मक हैं, तो इस बहुपद के सभी गुणांक और अचर पद एक ही चिह्न के होते हैं।
गुणनखंडन द्वारा निम्नलिखित बहुपदों के शून्यक ज्ञात कीजिए तथा इन बहुपदों के गुणांकों और शून्यकों के बीच के संबंधों को सत्यापित कीजिए:
निम्नलिखित में बहुपद् ज्ञात कीजिए, जिनके शून्यकों के क्रमशः योग और गुणनफल दिए हुए हैं। साथ ही, गुणनखंडन द्वारा, इन बहुपदों के शून्यक भी ज्ञात कीजिए :
`(-8)/3, 4/3`
निम्नलिखित में बहुपद् ज्ञात कीजिए, जिनके शून्यकों के क्रमशः योग और गुणनफल दिए हुए हैं। साथ ही, गुणनखंडन द्वारा, इन बहुपदों के शून्यक भी ज्ञात कीजिए :
`-2sqrt3, -9`