हिंदी

निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए: x dy - y dx = x2+y2 dx - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:

x  dy - y  dx = `sqrt(x^2 + y^2)`  dx

योग

उत्तर

`x  dy - y  dx =  sqrt(x^2 + y^2)   dx`,

जिसे `x dy/dx = y + sqrt (x^2 + y^2)` के रूप में लिखा जा सकता है।

या `dy/dx = y/x + sqrt (1 + (y/x)^2)`        ....(1)

चूँकि R.H.S. का रूप `g(y/x)` है, अतः यह घात शून्य का एक समरूप फलन है।

अतः समीकरण (1) एक समरूप अवकल समीकरण है।

इसे हल करने के लिए, y = vx रखने पर,

⇒ `dy/dx = v + x (dv)/dx`

(1) में y और `dy/dx` का मान प्रतिस्थापित करने पर, हम प्राप्त करते हैं।

`v + x (dv)/dx = v + sqrt (1 + v^2)`

⇒ `x (dv)/dx = sqrt(1 + v^2)`

⇒ `dx/x = (dv)/sqrt(1 + v^2)`

⇒ `int dx/x = int (dv)/ sqrt(1 + v^2)`

⇒ `log x + log C_1 = log |v + sqrt (1+ v^2)|`

⇒ `log x + log C_1 = log |y/x + sqrt (1 + y^2/x^2)|`

⇒ `log C_1 x = log |y + sqrt (x^2 + y^2)| - log x`

⇒ `pm C_1 x^2 = y + sqrt (x^2 + y^2)`

⇒ `Cx^2 = y + sqrt (x^2 + y^2)` 

shaalaa.com
प्रथम कोटि एवं प्रथम घात के अवकाल समीकरणों को हल करने की विधियाँ - समघातीय अनकल समीकरण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: अवकल समीकरण - प्रश्नावली 9.5 [पृष्ठ ४२२]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
अध्याय 9 अवकल समीकरण
प्रश्नावली 9.5 | Q 6. | पृष्ठ ४२२

संबंधित प्रश्न

निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:

(x2 + xy) dy = (x2 + y2) dx


निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:

`y' = (x + y)/x`


निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:

(x - y) dy -(x + y) dx = 0


निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:

(x2 - y2) dx + 2xy dy = 0


निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:

`x^2  dy/dx = x^2 - 2y^2 + xy`


निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:

`{x cos (y/x) + y sin (y/x)} y dx = {y sin (y/x) - x cos (y/x)} x dy`


निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:

`x dy/dx - y + x sin (y/x) = 0`


निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:

`y  dx + x log(y/x)dy - 2x  dy = 0`


निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:

`(1 + e^(x/y))dx + e^(x/y)(1 - x/y) dy = 0`


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

x2dy + (xy + y2) dx = 0; y = 1 यदि x = 1


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

`[x sin^2 (y/x) - y]dx + x dy = 0; y = pi/4` यदि x = 1


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

`"dy"/"dx" - y/x + cosec (y/x) = 0;` y = 0 यदि x = 1


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

`2xy + y^2 - 2x^2 dy/dx = 0`; y = 2 यदि x = 1


`dx/dy = h(x/y)` के रूप वाले समघातीय अवकल समीकरण को हल करने के लिए निम्नलिखित में से कौन-सा प्रतिस्थापन किया जाता है:


निम्नलिखित में से कौन-सा समघातीय अवकल समीकरण है?


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + 2y = sin x`


मूल बिंदु से गुजरने वाले एक वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता उस बिंदु के निर्देशांकों के योग के बराबर है।


बिंदु (0, 2) से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिन्दु के निर्देशांकों का योग उस बिंदु पर खींची गई स्पर्श रेखा की प्रवणता के परिमाण से 5 अधिक है।


अवकल समीकरण `(y dx - x dy)/y = 0` का व्यापक हल है:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×