Advertisements
Advertisements
प्रश्न
अवकल समीकरण `(y dx - x dy)/y = 0` का व्यापक हल है:
विकल्प
xy = C
x = Cy2
y = Cx
y = Cx2
उत्तर
y = Cx
स्पष्टीकरण:
दिया है, अवकल समीकरण
`(y dx - x dy)/y = 0`
या `dx - y/x dy = 0`
या `dx/x - dy/y = 0`
समाकलन करने पर,
⇒ log |x| - log |y| = log |C'|
⇒ `log |x/y| = log |C'|`
⇒ `x/y = C'`
⇒ `y = 1/C' x`
⇒ y = Cx
जब `1/C = C`
जो आवश्यक समाधान है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:
(x2 + xy) dy = (x2 + y2) dx
निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:
(x - y) dy -(x + y) dx = 0
निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:
(x2 - y2) dx + 2xy dy = 0
निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:
`x^2 dy/dx = x^2 - 2y^2 + xy`
निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:
x dy - y dx = `sqrt(x^2 + y^2)` dx
निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:
`{x cos (y/x) + y sin (y/x)} y dx = {y sin (y/x) - x cos (y/x)} x dy`
निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:
`x dy/dx - y + x sin (y/x) = 0`
निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:
`y dx + x log(y/x)dy - 2x dy = 0`
निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:
`(1 + e^(x/y))dx + e^(x/y)(1 - x/y) dy = 0`
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।
x2dy + (xy + y2) dx = 0; y = 1 यदि x = 1
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।
`[x sin^2 (y/x) - y]dx + x dy = 0; y = pi/4` यदि x = 1
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।
`"dy"/"dx" - y/x + cosec (y/x) = 0;` y = 0 यदि x = 1
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।
`2xy + y^2 - 2x^2 dy/dx = 0`; y = 2 यदि x = 1
`dx/dy = h(x/y)` के रूप वाले समघातीय अवकल समीकरण को हल करने के लिए निम्नलिखित में से कौन-सा प्रतिस्थापन किया जाता है:
निम्नलिखित में से कौन-सा समघातीय अवकल समीकरण है?
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + 2y = sin x`
मूल बिंदु से गुजरने वाले एक वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता उस बिंदु के निर्देशांकों के योग के बराबर है।
बिंदु (0, 2) से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिन्दु के निर्देशांकों का योग उस बिंदु पर खींची गई स्पर्श रेखा की प्रवणता के परिमाण से 5 अधिक है।