हिंदी

मूल बिंदु से गुजरने वाले एक वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता उस बिंदु के निर्देशांकों के योग के बराबर है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

मूल बिंदु से गुजरने वाले एक वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता उस बिंदु के निर्देशांकों के योग के बराबर है।

योग

उत्तर

हम जानते हैं कि वक्र पर स्पर्शरेखा का ढलान `dy/dx` है।

हमें यह बताया गया है कि,

`dy/dx = x + y`

⇒ `dy/dx - y = x`              ....(1)

जो कि इस प्रकार का एक रैखिक समीकरण है,

`dy/dx + Py = Q`

यहाँ P = -1 और Q = x

∴ `I.F. = e^(intP dx) = e^(int -dx) = e^-x`

∴ समाधान है, `y. (I.F.) = int Q. (I.F.) dx + C`

`y.e^-x = int x.e^-x  dx + C`

`= x * (e^-x)/-1 - int (1)  (e^-x)/-1  dx + C`            ...[भागों द्वारा एकीकरण]

⇒ `ye^-x = -xe^-x + int e^-x  dx + C`

`= -xe^-x + (e^-x)/-1 + C`

⇒ y = -x - 1 + Cex                    ....(2)

चूँकि वक्र मूल बिंदु (0, 0) से होकर गुजरता है,

∴ 0 = - 0 - 1 + Ce0

⇒ C = 1

(2) में रखने पर, हमें y = -x - 1 + ex मिलता है,

⇒ x + y + 1 = ex

जो वक्र का आवश्यक समीकरण है।

shaalaa.com
प्रथम कोटि एवं प्रथम घात के अवकाल समीकरणों को हल करने की विधियाँ - समघातीय अनकल समीकरण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: अवकल समीकरण - प्रश्नावली 9.6 [पृष्ठ ४३०]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
अध्याय 9 अवकल समीकरण
प्रश्नावली 9.6 | Q 16. | पृष्ठ ४३०

संबंधित प्रश्न

निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:

(x2 + xy) dy = (x2 + y2) dx


निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:

(x - y) dy -(x + y) dx = 0


निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:

(x2 - y2) dx + 2xy dy = 0


निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:

`x^2  dy/dx = x^2 - 2y^2 + xy`


निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:

x  dy - y  dx = `sqrt(x^2 + y^2)`  dx


निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:

`{x cos (y/x) + y sin (y/x)} y dx = {y sin (y/x) - x cos (y/x)} x dy`


निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:

`x dy/dx - y + x sin (y/x) = 0`


निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:

`y  dx + x log(y/x)dy - 2x  dy = 0`


निम्नलिखित प्रश्न में दर्शाइए कि दिया हुआ अवकल समीकरण समघातीय है और इसको हल कीजिए:

`(1 + e^(x/y))dx + e^(x/y)(1 - x/y) dy = 0`


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

x2dy + (xy + y2) dx = 0; y = 1 यदि x = 1


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

`[x sin^2 (y/x) - y]dx + x dy = 0; y = pi/4` यदि x = 1


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

`"dy"/"dx" - y/x + cosec (y/x) = 0;` y = 0 यदि x = 1


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

`2xy + y^2 - 2x^2 dy/dx = 0`; y = 2 यदि x = 1


`dx/dy = h(x/y)` के रूप वाले समघातीय अवकल समीकरण को हल करने के लिए निम्नलिखित में से कौन-सा प्रतिस्थापन किया जाता है:


निम्नलिखित में से कौन-सा समघातीय अवकल समीकरण है?


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + 2y = sin x`


बिंदु (0, 2) से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिन्दु के निर्देशांकों का योग उस बिंदु पर खींची गई स्पर्श रेखा की प्रवणता के परिमाण से 5 अधिक है।


अवकल समीकरण `(y dx - x dy)/y = 0` का व्यापक हल है:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×