हिंदी

निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए- dydx-3ycotx=sin2x;y=2 यदि x = π2 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`dy/dx - 3 y cot x = sin 2x; y = 2` यदि x = `pi/2`

योग

उत्तर

दिया गया समीकरण है,

`dy/dx - 3 y cot x = sin 2x`                ....(1)

जो एक प्रकार का रैखिक समीकरण है।

`dy/dx + Py = Q`

यहाँ P = - 3cot x and Q =  sin 2x

∴ `intP dx = -3 int cot x  dx = -3 log |sin x|`

∴ `I.F. = e^(-3log|sin x|)`

`= e^(log cosec^3 x)`

`= cosec^3 x`

∴ समाधान है `y, (I.F.) = int Q. (I.F.) dx + C`

`y cosec^3 x = int sin2x  cosec^3 x   dx + C`

`= int (2 sin x cos x)/(sin^3 x)  dx + C`

`= 2 int cosec x cot x  dx + C`

`= - 2 cosec  x  +C`

⇒ y = -2 sin2 x + C sin3 x                          ....(2)

जब `x = pi/2, y = 2`

∴ `2 = -2 sin^2  pi/2 + C sin^3  pi/2`

⇒ 2 = -2 (1)2 + C (1)3

⇒ C = 2 + 2

⇒ C = 4

(2) रखने पर, हमें प्राप्त होता है,

y = - 2sin2 x + 4 sin3 x

⇒ y = 4 sin3 x - 2 sin x

जो आवश्यक समाधान है।

shaalaa.com
अवकल समीकरण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: अवकल समीकरण - प्रश्नावली 9.6 [पृष्ठ ४३०]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
अध्याय 9 अवकल समीकरण
प्रश्नावली 9.6 | Q 15. | पृष्ठ ४३०

संबंधित प्रश्न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + y/x + x^2`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`xdy/dx + 2y = x^2 log x`


वक्रों के कुल y = Ae2x + B.e–2x के लिए अवकल समीकरण ज्ञात कीजिए।


`x^2 "dy"/"dx" - x"y" = 1 + cos("y"/x)`, x ≠ 0 तथा जब x = 1 तब y = `pi/2` है को हल कीजिए।


अवकल समीकरण `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` की घात है


अवकल समीकरण `("dy"/"dx")^2 - x "dy"/"dx" + "y"` = 0 का एक हल है


अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है


अवकल समीकरण `x "dy"/"dx" - y` = sinx का समाकलन गणक ______ है।


वक्रों के कुल y = A sinx + B cosx को निरूपित करने वाला अवकल समीकरण ______ है।


जब `("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` को `"dy"/"dx" + "P"y` = Q, के रूप में लिखते हैं तब P = ______ है।


`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।


उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।


`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।


बिंदु (2, 1) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसका किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता  `(x^2 + "y"^2)/(2x"y")` है।


बिंदु (1, 0) से जाने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी भी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता `("y" - 1)/(x^2 + x)` है।


अवकल समीकरण `(("d"^2"y")/("d"x^2))^2 + (("dy")/("d"x))^2 = xsin(("dy")/("d"x))` की घात है


यदि y = e–x (Acosx + Bsinx) तब y एक हल है


अवकल समीकरण `"y" ("dy")/("d"x) + "c"` निरूपित करता है


`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है


वह वक्र जिसके लिए किसी बिंदु पर स्पर्श रेखा की प्रवणता उस बिंदु के x-अक्ष (भुज) तथा y-अक्ष (कोटि) के अनुपात के बराबर है वह है


अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x का हल है


अवकल समीकरण coty dx = xdy का हल ______ है।


अवकल समीकरण `("d"x)/("dy") + "P"_1x = "Q"_1` के समाकलन गुणक को `"e"^(int "P"_1"dy")` से लिखा जाता है।


 `("dy")/("d"x) = "f"(x, "y")` जहाँ f (x, y) एक शून्य घात वाला समघातीय फलन है, को हल करने के लिए सही प्रतिस्थापन y = vx है।


अवकल समीकरण `("dy")/("d"x) = (x + 2"y")/x` का हल x + y = kx2 है।


`x("dy")/("d"x) = "y" + x tan  "y"/x` का हल `sin("y"/x)` = cx है।


एक तल में सभी अक्षतिज (रेखाएँ जो क्षैतिज नहीं हैं) सरल रेखाओं का अवकल

समीकरण `("d"^2x)/("dy"^2)` = 0 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×