Advertisements
Advertisements
प्रश्न
`x("dy")/("d"x) = "y" + x tan "y"/x` का हल `sin("y"/x)` = cx है।
विकल्प
सत्य
असत्य
उत्तर
यह कथन सत्य है।
व्याख्या:
दिया गया अवकल समीकरण `x("dy")/("d"x) = "y" + x tan ("y"/x)` है।
`x ("dy")/("d"x) = -x tan ("y"/x)` = y
⇒ `("dy")/("d"x) - tan ("y"/x) = "y"/x`
⇒ `("dy")/("d"x) = "y"/x + tan ("y"/x)`
y = vx रखिए
⇒ `("dy")/("d"x) = "v" + x "dv"/"dx"`
⇒ `"v" + x * "dv"/"dx" = "vx"/x + tan ("vx"/x)`
⇒ `"v" + x "dv"/"dx" = "v" + tan "v"`
⇒ `x "dv"/"dx" = tan "v"`
⇒ `"dv"/tan"v" = ("d"x)/x`
⇒ `cot "v" "dv" = ("d"x)/x`
दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है
`int cot "v" "dv" = int ("d"x)/x`
⇒ `log sin "v" = log x + log "c"`
⇒ `log sin "v" - log x = log "c"`
⇒ `log sin "y"/x = log x"c"`
∴ `sin "y"/x` = xc
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`(1 + x^2) dy/dx + 2xy = 1/(1 + x^2); y = 0` यदि x = 1
निम्नलिखित अवकल समीकरण में से कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए।
`(d^2y)/dx^2 + 5x(dy/dx)^2 - 6y = log x`
अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।
मूल बिंदु से गुजरने वाली सरल रेखाओं के कुल का अवकल समीकरण ज्ञात कीजिए।
बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।
बताइए कि समीकरण xdy – ydx = `sqrt(x^2 + "y"^2) "d"x` किस प्रकार का अवकल समीकरण है तथा इसे हल कीजिए।
अवकल समीकरण `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` की घात है
परवलयों y2 = 4ax के कुल को निरूपित करने वाले अवकल समीकरण की कोटि ______ है।
जब `("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` को `"dy"/"dx" + "P"y` = Q, के रूप में लिखते हैं तब P = ______ है।
दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।
F(x, y) = `("y"cos("y"/x) + x)/(xcos("y"/x))` समघातीय फलन नहीं है।
अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।
`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।
अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।
अवकल समीकरण `"dy"/"dx" + 1` = ex + y को हल कीजिए।
अवकल समीकरण `"dy"/"dx"` = 1 + x + y2 + xy2, को हल कीजिए जब y = 0, x = 0
अवकल समीकरण (1 + y2) tan–1xdx + 2y(1 + x2) dy = 0 को हल कीजिए।
बिंदु (1, 1) से गुजरने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु P (x, y) से खींची गई स्पर्श रेखा, निर्देशांक अक्षों से A और B पर इस प्रकार मिलती है कि AB का मध्य बिंदु P है।
अवकल समीकरण `[1 + (("dy")/("d"x))^2]^(3/2) = ("d"^2"y")/("d"x^2)` की घात है
अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^(1/4) + x^(1/5)` = 0, के कोटि और घात क्रमश: हैं
`("dy")/("d"x) = ("y" + 1)/(x - 1)`, जब y (1) = 2 है के हलों की संख्या है।
अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^3 + 6"y"^5` = 0 की घात है
अवकल समीकरण cosx siny dx + sinx cosy dy = 0 का हल है
वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है
`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है
`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है
अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है
`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।
`("d"x)/("dy") = "g"(x, "y")` जहाँ g (x, y) एक शून्य घात वाला समघातीय फलन है, प्रकार के अवकल समीकरण को हल करने के लिए सही प्रतिस्थापन x = vy है।