English

Dydyyxdydx=y+xtan yx का हल ysin(yx) = cx है। - Mathematics (गणित)

Advertisements
Advertisements

Question

`x("dy")/("d"x) = "y" + x tan  "y"/x` का हल `sin("y"/x)` = cx है।

Options

  • सत्य

  • असत्य

MCQ
True or False

Solution

यह कथन सत्य है।

व्याख्या:

दिया गया अवकल समीकरण `x("dy")/("d"x) = "y" + x tan ("y"/x)` है।

`x ("dy")/("d"x) = -x tan ("y"/x)` = y

⇒ `("dy")/("d"x) - tan ("y"/x) = "y"/x`

⇒ `("dy")/("d"x) = "y"/x + tan ("y"/x)`

y = vx रखिए

⇒ `("dy")/("d"x) = "v" + x "dv"/"dx"`

⇒ `"v" + x * "dv"/"dx" = "vx"/x + tan ("vx"/x)`

⇒ `"v" + x "dv"/"dx" = "v" + tan "v"`

⇒ `x "dv"/"dx" = tan "v"`

⇒ `"dv"/tan"v" = ("d"x)/x`

⇒ `cot "v" "dv" = ("d"x)/x`

दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है

`int cot "v" "dv" = int ("d"x)/x`

⇒ `log sin "v" = log x + log "c"`

⇒ `log sin "v" - log x = log "c"`

⇒ `log sin  "y"/x = log x"c"`

∴ `sin  "y"/x` = xc

shaalaa.com
अवकल समीकरण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - प्रश्नावली [Page 198]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 9 अवकल समीकरण
प्रश्नावली | Q 77. (x) | Page 198

RELATED QUESTIONS

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + 3y = e^(- 2x)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`cos^2 x dy/dx + y = tan x (0 <= x < pi/2)`


अवकल समीकरण x`dy/dx - y = 2x^2` का समाकलन गुणक है:


अवकल समीकरण `(1 - y^2)  dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:


वक्रों के कुल y = Ae2x + B.e–2x के लिए अवकल समीकरण ज्ञात कीजिए।


मूल बिंदु से गुजरने वाली सरल रेखाओं के कुल का अवकल समीकरण ज्ञात कीजिए।


बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।


अवकल समीकरण `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 की घात ______ हैं।


अवकल समीकरण  `"dy"/"dx" = "e"^(x - y)` का व्यापक हल ______ है।


वक्रों के कुल y = A sinx + B cosx को निरूपित करने वाला अवकल समीकरण ______ है।


F(x, y) = `(x^2 + y^2)/(x - y)` कोटि 1 का समघातीय फलन है।


अवकल समीकरण `"y"^2 "dy"/"dx" + "y"^2 + 1` = 0 का एक हल x + y = tan–1y है।


अवकल समीकरण `"dy"/"dx" + 1` = ex + y को हल कीजिए।


यदि y (x) समीकरण `((2 + sinx)/(1 + "y"))"dy"/"dx"` = – cosx  का हल है और y (0) = 1, है तब  `"y"(pi/2)` का मान ज्ञात कीजिए।


यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का  y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`


`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।


केंद्र (1, 2) वाले सभी सकेंद्री वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए।


अवकल समीकरण xdy – ydx = 0 का हल निरूपित करता है एक ______


अवकल समीकरण `cosx ("dy")/("d"x) + "y"sinx` = 1 का समाकलन गुणक है।


अवकल समीकरण `"y" ("dy")/("d"x) + "c"` निरूपित करता है


`("dy")/("d"x) + "y" = "e"^-x` जब y(0) = 0  का हल है


अवकल समीकरण `("dy")/("d"x) + "y" tanx - secx` = 0 का समाकलन गुणक है


`x ("dy")/("d"x) + "y"` = ex का हल है


`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है


अवकल समीकरण  `("dy")/("d"x) = "e"^(x^2/2) + x"y"` का व्यापक हल है


अवकल समीकरण `("d"^2"y")/("d"x^2) + "e"^(("dy")/("d"x))` = 0 की घात ______ है।


`("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक ______ है।


`("dy")/("d"x) = ("y"/x)^(1/3)` का हल  `"y"^(2/3) - x^(2/3)` = c है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×