English

बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है। - Mathematics (गणित)

Advertisements
Advertisements

Question

बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।

Sum

Solution

माना P(x, y) से अभिलंब का समीकरण Y – y = `(-"dx")/"dy" ("X" - x)` 

अर्थात्‌ `"Y" + "X" "dx"/"dy" - (y + x "dx"/"dy")` = 0   .....(1)

इसलिए मूल बिंदु से (1) की लंबवत्‌ दूरी

`(y + x "dx"/"dy")/sqrt(1 + ("dx"/"dy")^2)`  .....(2)

साथ ही P की x-अक्ष से दूरी |y| है। 

अत: `(y + x "dx"/"dy")/sqrt(1 + ("dx"/"dy")^2) = |y|`

⇒ `(y + x "dx"/"dy")^2 = y^2 [1 + ("dx"/"dy")^2]`

⇒ `"dx"/"dy" ["dx"/"dy" (x^2 - y^2) + 2xy]` = 0

⇒ `"dx"/"dy"` = 0

या `"dx"/"dy" = (2xy)/(y^2 - x^2)`

स्थिति I: `"dx"/"dy" = 0

⇒ dx = 0

दोनों पक्षों का समाकलन करने पर हमें x = k प्राप्त होता है।

x = 1 रखने पर k = 1 प्राप्त होता है।

इसलिए वक्र का समीकरण x = 1 है।  .....(यह संभव नहीं है इसलिए इसको अस्वीकार करते हैं)

स्थिति II: `"dx"/"dy" = (2xy)/(y^2 - x^2)`

⇒ `"dy"/"dx" = (y^2 - x^2)/(2xy)`.

अब y = vx, रखने पर हम प्राप्त करते हैं

`"v" + x "dv"/"dx" = ("v"^2x^2 - x^2)/(2"v"x^2)`

⇒ `x * "dv"/"dx" = ("v"^2 - 1)/(2"v")`

= `(-(1 + "v"^2))/(2"v")`

⇒ `(2"v")/(1 + "v"^2) "dv" = (-"dv")/x`

दोनों पक्षों का समाकलन करने पर हम प्राप्त करते हैं कि

log(1 + v2) = – logx + logc

⇒ log(1 + v2)(x) = log c

⇒ (1 + v2) x = c

⇒ x2 + y2 = cx.

अब x = 1 तथा

y = 1 रखने पर  c = 2 प्राप्त होता है।

इसलिए, x2 + y2 – 2x = 0 वाँछित समीकरण है।

shaalaa.com
अवकल समीकरण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - हल किये हुए उदाहरण [Page 179]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 9 अवकल समीकरण
हल किये हुए उदाहरण | Q 8 | Page 179

RELATED QUESTIONS

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`dy/dx + (sec x)y = tan x (0 <= x <= pi/2)`


परवलयों y2 = 4ax के कुल को निरूपित करने वाले अवकल समीकरण की कोटि ______ है।


अवकल समीकरण `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 की घात ______ हैं।


अवकल समीकरण tan x dx + tan y dy = 0 के विशिष्ट हल में स्वेच्छ अचरों की संख्या ______ है।


वक्रों के कुल y = A sinx + B cosx को निरूपित करने वाला अवकल समीकरण ______ है।


जब `("e"^(-2sqrt(x))/sqrt(x) - y/sqrt(x))("d"x)/("d"y) = 1(x ≠ 0)` को `"dy"/"dx" + "P"y` = Q, के रूप में लिखते हैं तब P = ______ है।


F(x, y) = `(x^2 + y^2)/(x - y)` कोटि 1 का समघातीय फलन है।


एक तल में सभी रेखाएँ जो ऊर्ध्वाधर नहीं हैं के लिए अवकल समीकरण ज्ञात कीजिए।


अवकल समीकरण `(x^2 - 1) "dy"/"dx" + 2x"y" = 1/(x^2 - 1)` को हल कीजिए।


ydx – xdy = x2 ydx को हल कीजिए।


अवकल समीकरण  `"dy"/"dx"` = 1 + x + y2 + xy2,  को हल कीजिए जब y = 0, x = 0


अवकल समीकरण dy = cosx(2 – y cosecx) dx को हल कीजिए, दिया है कि x = `pi/2` तब y = 2 है।


अवकल समीकरण (1 + y2) tan–1xdx + 2y(1 + x2) dy = 0 को हल कीजिए।


`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।


अवकल समीकरण `(("d"^2"y")/("d"x^2))^2 + (("dy")/("d"x))^2 = xsin(("dy")/("d"x))` की घात है


अवकल समीकरण `[1 + (("dy")/("d"x))^2]^(3/2) = ("d"^2"y")/("d"x^2)` की घात है


यदि y = e–x (Acosx + Bsinx) तब y एक हल है


अवकल समीकरण tany sec2 x dx + tanx sec2 ydy = 0 का हल है।


निम्न से कौन सा अवकल समीकरण कोटि 2 का है?


tan–1 x + tan–1 y = c किस अवकल समीकरण का व्यापक हल है?


`x ("dy")/("d"x) + "y"` = ex का हल है


अवकल समीकरण `[1 + (("dy")/("d"x))^2] = ("d"^2"y")/("d"x^2)` की कोटि तथा घात क्रमश: है


अवकल समीकरण  `("dy")/("d"x) = "e"^(x - "y") + x^2 "e"^-"y"` का हल है


`("dy")/("d"x) + "y"/(xlogx) = 1/x` इस ______ प्रकार का समीकरण है।


`("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक ______ है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×