Advertisements
Advertisements
प्रश्न
बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।
उत्तर
माना P(x, y) से अभिलंब का समीकरण Y – y = `(-"dx")/"dy" ("X" - x)`
अर्थात् `"Y" + "X" "dx"/"dy" - (y + x "dx"/"dy")` = 0 .....(1)
इसलिए मूल बिंदु से (1) की लंबवत् दूरी
`(y + x "dx"/"dy")/sqrt(1 + ("dx"/"dy")^2)` .....(2)
साथ ही P की x-अक्ष से दूरी |y| है।
अत: `(y + x "dx"/"dy")/sqrt(1 + ("dx"/"dy")^2) = |y|`
⇒ `(y + x "dx"/"dy")^2 = y^2 [1 + ("dx"/"dy")^2]`
⇒ `"dx"/"dy" ["dx"/"dy" (x^2 - y^2) + 2xy]` = 0
⇒ `"dx"/"dy"` = 0
या `"dx"/"dy" = (2xy)/(y^2 - x^2)`
स्थिति I: `"dx"/"dy" = 0
⇒ dx = 0
दोनों पक्षों का समाकलन करने पर हमें x = k प्राप्त होता है।
x = 1 रखने पर k = 1 प्राप्त होता है।
इसलिए वक्र का समीकरण x = 1 है। .....(यह संभव नहीं है इसलिए इसको अस्वीकार करते हैं)
स्थिति II: `"dx"/"dy" = (2xy)/(y^2 - x^2)`
⇒ `"dy"/"dx" = (y^2 - x^2)/(2xy)`.
अब y = vx, रखने पर हम प्राप्त करते हैं
`"v" + x "dv"/"dx" = ("v"^2x^2 - x^2)/(2"v"x^2)`
⇒ `x * "dv"/"dx" = ("v"^2 - 1)/(2"v")`
= `(-(1 + "v"^2))/(2"v")`
⇒ `(2"v")/(1 + "v"^2) "dv" = (-"dv")/x`
दोनों पक्षों का समाकलन करने पर हम प्राप्त करते हैं कि
log(1 + v2) = – logx + logc
⇒ log(1 + v2)(x) = log c
⇒ (1 + v2) x = c
⇒ x2 + y2 = cx.
अब x = 1 तथा
y = 1 रखने पर c = 2 प्राप्त होता है।
इसलिए, x2 + y2 – 2x = 0 वाँछित समीकरण है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`dy/dx + (sec x)y = tan x (0 <= x <= pi/2)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`(x + 3y^2) dy/dx = y, (y > 0)`
अवकल समीकरण `(1 - y^2) dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:
अवकल समीकरण `"dy"/"dx"` = yex, x = 0, y = e में y का मान बताएं जब x = 1
`x^2 "dy"/"dx" - x"y" = 1 + cos("y"/x)`, x ≠ 0 तथा जब x = 1 तब y = `pi/2` है को हल कीजिए।
अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।
`"dy"/"dx" + "y"` = 5 एक `"dy"/"dx" + "Py"` = Q प्रकार का अवकल समीकरण है परंतु इसे चर पृथक्करणीय विधि से भी हल कर सकते हैं।
F(x, y) = `(x^2 + y^2)/(x - y)` कोटि 1 का समघातीय फलन है।
अवकल समीकरण `"dy"/"dx" - y` = cos x is ex का समाकलन गुणक ex है।
अवकल समीकरण `("d"^2"y")/("d"x^2) - x^2 "dy"/"dx" + x"y"` = x का एक विशिष्ट हल y = x है।
दिया है कि `"dy"/"dx" = "e"^-2x` और जब x = 5 तब y = 0 है। जब y = 3 है तब x का मान ज्ञात कीजिए।
यदि y (x) समीकरण `((2 + sinx)/(1 + "y"))"dy"/"dx"` = – cosx का हल है और y (0) = 1, है तब `"y"(pi/2)` का मान ज्ञात कीजिए।
`x^2 "dy"/"dx"` = x2 + xy + y2 को हल कीजिए।
y2dx + (x2 – xy + y2) dy = 0 का व्यापक हल ज्ञात कीजिए।
केंद्र (1, 2) वाले सभी सकेंद्री वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए।
(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।
अवकल समीकरण `[1 + (("dy")/("d"x))^2]^(3/2) = ("d"^2"y")/("d"x^2)` की घात है
यदि y = e–x (Acosx + Bsinx) तब y एक हल है
निम्न से कौन सा अवकल समीकरण कोटि 2 का है?
ex cosy dx – ex siny dy = 0 का व्यापक हल है
वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है
`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है
अवकल समीकरण जिसका एक हल y = acosx + bsinx है
`("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + "y"` = 0 का निम्त में से कौन सा व्यापक हल है
`("dy")/("d"x) + "y"tanx = secx` व्यापक हल है
अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।
कोटि तीन के अवकल समीकरण के व्यापक हल में स्वेच्छ अचरों की संख्या ______ है।
`(1 + x^2) ("dy")/("d"x) + 2x"y" - 4x^2` = 0 का हल ______ है।
अवकल समीकरण ydx + (x + xy)dy = 0 का हल ______ है।