Advertisements
Advertisements
प्रश्न
`("dy")/("d"x) = 2x"e"^(x^2 - "y")` का व्यापक हल है
पर्याय
`"e"^(x^2 - "y")` = c
`"e"^-"y" + "e"^(x^2)` = c
`"e"^-"y" = "e"^(x^2)` + c
`"e"^(x^2 + "y")` = c
उत्तर
सही उत्तर `underline("e"^-"y" = "e"^(x^2) + "c")` है।
व्याख्या:
दिया गया अवकल समीकरण `("dy")/("d"x) = 2x"e"^(x^2 - "y")` है।
⇒ `("dy")/("d"x) = 2x . "e"^(x^2) . "e"^-"y"`
⇒ `("dy")/("e"^-"y") = 2x . "e"^(x^2) "d"x`
दोनों पक्षों का समाकलन करने पर हमें प्राप्त होता है
`int ("dy")/("e"^-"y") = int 2x . "e"^(x^2) "d"x`
⇒ `int "e"^"y" "dy" = int 2x . "e"^(x^2) "d"x`
R.H.S. में x2 = t रखिए
∴ 2x dx = dt
∴ `int "e"^"y" "dy" = int "e"^"t" "dt"`
⇒ ey = et + c
⇒ ey = `"e"^("y"^2) + "c"`
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x log x dy/dx + y = 2/x log x`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
y dx + (x – y2)dy = 0
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`(1 + x^2) dy/dx + 2xy = 1/(1 + x^2); y = 0` यदि x = 1
निम्नलिखित अवकल समीकरण में से कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए।
`(d^2y)/dx^2 + 5x(dy/dx)^2 - 6y = log x`
बिंदु (1, 1) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कौजिए जिसका किसी बिंदु P(x, y) से वक्र के अभिलंब की मूल बिंदु से लंबवत दूरी P से x-अक्ष की दूरी के बराबर है।
अवकल समीकरण `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` की घात है
अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है
F(x, y) = `(x^2 + y^2)/(x - y)` कोटि 1 का समघातीय फलन है।
अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।
अवकल समीकरण `"y"^2 "dy"/"dx" + "y"^2 + 1` = 0 का एक हल x + y = tan–1y है।
अवकल समीकरण `"dy"/"dx"` = 1 + x + y2 + xy2, को हल कीजिए जब y = 0, x = 0
यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`
`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।
`("dy")/("d"x) -3"y" = sin2x` का व्यापक हल ज्ञात कीजिए।
अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^(1/4) + x^(1/5)` = 0, के कोटि और घात क्रमश: हैं
अवकल समीकरण `"y" ("dy")/("d"x) + "c"` निरूपित करता है
अवकल समीकरण `("dy")/("d"x) + "y" = (1 + "y")/x` का समाकलन गुणक है
अवकल समीकरण cosx siny dx + sinx cosy dy = 0 का हल है
वक्र कुल y = Ax + A3 उस अवकल समीकरण के तदनुरूपी (संगत) है जिसकी कोटि है
समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है
अवकल समीकरण `(("d"^3"y")/("d"x^3))^2 - 3 ("d"^2"y")/("d"x^2) + 2(("dy")/("d"x))^4` = y4 की कोटि तथा घात क्रमश: है
वक्र कुल y2 = 4a(x + a) का अवकल समीकरण है
अवकल समीकरण `("dy")/("d"x) = "e"^(x - "y") + x^2 "e"^-"y"` का हल है
अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।
कोटि तीन के अवकल समीकरण के व्यापक हल में स्वेच्छ अचरों की संख्या ______ है।
`x("dy")/("d"x) = "y" + x tan "y"/x` का हल `sin("y"/x)` = cx है।