Advertisements
Advertisements
प्रश्न
वक्र कुल y2 = 4a(x + a) का अवकल समीकरण है
पर्याय
`"y"^2 - 4 ("dy")/("d"x)(x + ("dy")/("d"x))`
`2"y" ("dy")/("d"x)` = 4a
`"y" ("d"^2"y")/("d"x^2) + (("dy")/("d"x))^2` = 0
`2x ("dy")/("d"x) + "y"(("dy")/("d"x))^2 - "y"`
उत्तर
सही उत्तर `underline(2x ("dy")/("d"x) + "y"(("dy")/("d"x))^2 - "y")` है।
व्याख्या:
वक्रों के कुल का दिया गया समीकरण y2 = 4a(x + a) है।
⇒ y2 = 4ax + 4a2 .......(1)
दोनों पक्षों का x के सापेक्ष अवकलन करने पर
`2"y" * ("dy")/("d"x)` = 4a
⇒ `"y" * ("dy")/("d"x)` = 2a
⇒ `"y"/2 ("dy")/("d"x)` = a
अब, a का मान समीकरण (1) में रखने पर हमें प्राप्त होता है
`"y"^2 = 4x("y"/2 ("dy")/("d"x)) + 4("y"/2 * ("dy")/("d"x))^2`
⇒ `"y"^2 = 2x"y" ("dy")/("d"x) + "y"^2 (("dy")/("d"x))^2`
⇒ y = `2x ("dy")/("d"x) + "y"(("dy")/("d"x))^2`
⇒ `2x * ("dy")/("d"x) + "y" * (("dy")/("d"x))^2 - "y"` = 0
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`
निम्नलिखित अवकल समीकरण में से कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए।
`(d^2y)/dx^2 + 5x(dy/dx)^2 - 6y = log x`
अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।
मूल बिंदु से गुजरने वाली सरल रेखाओं के कुल का अवकल समीकरण ज्ञात कीजिए।
अवकल समीकरण `2x * "dy"/"dx" y` = 3 का हल किस कुल को निरूपित करता है?
अवकल समीकरण (1 + y2) tan–1xdx + 2y(1 + x2) dy = 0 को हल कीजिए।
`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।
(1 + tany)(dx – dy) + 2xdy = 0 का व्यापक हल ज्ञात कीजिए।
`("dy")/("d"x) -3"y" = sin2x` का व्यापक हल ज्ञात कीजिए।
बिंदु (1, 1) से गुजरने वाले उस वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु P (x, y) से खींची गई स्पर्श रेखा, निर्देशांक अक्षों से A और B पर इस प्रकार मिलती है कि AB का मध्य बिंदु P है।
अवकल समीकरण `[1 + (("dy")/("d"x))^2]^(3/2) = ("d"^2"y")/("d"x^2)` की घात है
y = Ax + A3 } द्वारा निरूपित वक्रों के कुल के अवकल समीकरण की घात है
`(x"dy")/("d"x) - "y" = x^4 - 3x` का समाकलन गुणक है:
`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है
अवकल समीकरण `("d"^2"y")/("d"x^2) + (("dy")/("d"x))^3 + 6"y"^5` = 0 की घात है
अवकल समीकरण `("dy")/("d"x) + "y" tanx - secx` = 0 का समाकलन गुणक है
y = aemx+ be–mx निम्न में से किस अवकल समीकरण को संतुष्ट करता है
वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है
समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है
अवकल समीकरण `[1 + (("dy")/("d"x))^2] = ("d"^2"y")/("d"x^2)` की कोटि तथा घात क्रमश: है
अवकल समीकरण `("dy")/("d"x) + "y"/x` = sec x का हल है
अवकल समीकरण (ex + 1) ydy = (y + 1) exdx का व्यापाक हल है
अवकल समीकरण `("d"^2"y")/("d"x^2) + "e"^(("dy")/("d"x))` = 0 की घात ______ है।
`("dy")/("d"x) + "y"/(xlogx) = 1/x` इस ______ प्रकार का समीकरण है।
अवकल समीकरण `x("dy")/("d"x) + 2"y" = x^2` का हल ______ है।
अवकल समीकरण ydx + (x + xy)dy = 0 का हल ______ है।
`("d"x)/("dy") = "g"(x, "y")` जहाँ g (x, y) एक शून्य घात वाला समघातीय फलन है, प्रकार के अवकल समीकरण को हल करने के लिए सही प्रतिस्थापन x = vy है।
वक्रों के कुल y = ex (Acosx + Bsinx) को निरूपित करने वाला अवकल समीकरण `("d"^2"y")/("d"x^2) - 2 ("dy")/("d"x) + 2"y"` = 0 है।