Advertisements
Advertisements
प्रश्न
`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है
पर्याय
xy = – ex
xy = – e-x
xy = – 1
y = 2ex – 1
उत्तर
सही उत्तर y = 2ex – 1 है।
व्याख्या:
दिया गया अवकल समीकरण `("dy")/("d"x) - "y"` = 1 है।
यहाँ, P = –1, Q = 1
∴ समाकलन गुणक, I.F. = `"e"^(intPdx)`
= `"e"^(int -1"d"x)`
= `"e"^-x`
तो, हल `"y" xx "I"."F". = int "Q" ."I"."F". "d"x + "c"` है।
⇒ `"y" xx "e"^-x = int 1."e"^-x "d"x + "c"`
⇒ `"y" * "e"^-x = -"e"^-x + "c"`
x = 0, y = 1 रखिए
⇒ `1. "e"^0 = - "e"^0 + "c"`
⇒ 1 = `-1 + "c"`
∴ c = 2
तो समीकरण `"y" * "e"^-x = -"e"^-x + 2` है।
⇒ y = `-1 + 2"e"^x`
= `2"e"^x - 1`.
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-
`(1 + x^2) dy/dx + 2xy = 1/(1 + x^2); y = 0` यदि x = 1
अवकल समीकरण x`dy/dx - y = 2x^2` का समाकलन गुणक है:
अवकल समीकरण `(1 - y^2) dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:
अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx"` = yex, x = 0, y = e में y का मान बताएं जब x = 1
बिंदु 1,`pi/4` से जाने वाले वक् का समीकरण ज्ञात कीजिए यदि किसी बिंदु P (x, y) पर वक्र की स्पर्श रेखा की प्रवणता `"y"/x - cos^2"y"/x` है।
दी गई त्रिज्या a के सभी वृत्तों के अवकल समीकरण की कोटि है
अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है
अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है
अवकल समीकरण `x "dt"/"dx" + 2"y"` = x2 का हल है
अवकल समीकरण `x "dy"/"dx" - y` = sinx का समाकलन गणक ______ है।
दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।
अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।
अवकल समीकरण x(1 + y2)dx + y(1 + x2)dy = 0 का व्यापक हल (1 + x2)(1 + y2) = k है।
अवकल समीकरण `"dy"/"dx" + 2x"y"` = y को हल कीजिए।
उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।
`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।
अवकल समीकरण `cosx ("dy")/("d"x) + "y"sinx` = 1 का समाकलन गुणक है।
`(x"dy")/("d"x) - "y" = x^4 - 3x` का समाकलन गुणक है:
अवकल समीकरण `(1 - x^2) ("dy")/("d"x) - x"y"` = 1 का समाकलन गुणक है
अवकल समीकरण `("dy")/("d"x) + "y" tanx - secx` = 0 का समाकलन गुणक है
वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है
अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।
`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।
`("d"x)/("dy") + "p"_1x = "Q"_1` प्रकार के अवकल समीकरण के हल को x.I.F. = `("I"."F") xx "Q"_1"dy"` द्वारा दिया जाता है।
`("dy")/("d"x) = "f"(x, "y")` जहाँ f (x, y) एक शून्य घात वाला समघातीय फलन है, को हल करने के लिए सही प्रतिस्थापन y = vx है।