मराठी

Dydydydx-y = 1 का हल जब, y(0) = 1 है - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है

पर्याय

  • xy = – ex

  • xy = – e-x 

  • xy = – 1

  • y = 2ex – 1

MCQ

उत्तर

सही उत्तर y = 2ex – 1 है। 

व्याख्या:

दिया गया अवकल समीकरण `("dy")/("d"x) - "y"` = 1  है।  

यहाँ, P = –1, Q = 1

∴ समाकलन गुणक, I.F. = `"e"^(intPdx)`

= `"e"^(int -1"d"x)`

= `"e"^-x`

तो, हल `"y" xx "I"."F". = int "Q" ."I"."F". "d"x + "c"` है।

⇒ `"y" xx "e"^-x = int 1."e"^-x  "d"x + "c"`

⇒ `"y" * "e"^-x = -"e"^-x + "c"`

x = 0, y = 1 रखिए

⇒ `1. "e"^0 = - "e"^0 + "c"`

⇒ 1 = `-1 + "c"`

∴ c = 2

तो समीकरण `"y" * "e"^-x = -"e"^-x + 2` है। 

⇒ y = `-1 + 2"e"^x`

= `2"e"^x - 1`.

shaalaa.com
अवकल समीकरण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १९२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 9 अवकल समीकरण
प्रश्नावली | Q 44 | पृष्ठ १९२

संबंधित प्रश्‍न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए-

`(1 + x^2) dy/dx + 2xy = 1/(1 + x^2); y = 0` यदि x = 1


अवकल समीकरण x`dy/dx - y = 2x^2` का समाकलन गुणक है:


अवकल समीकरण `(1 - y^2)  dy/dx + yx = ay (-1 < y < 1)` का समाकलन गुणक है:


अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।


अवकल समीकरण `"dy"/"dx"` = yex,  x = 0, y = e में y का मान बताएं जब x = 1


बिंदु 1,`pi/4` से जाने वाले वक् का समीकरण ज्ञात कीजिए यदि किसी बिंदु P (x, y) पर वक्र की स्पर्श रेखा की प्रवणता `"y"/x - cos^2"y"/x` है।


दी गई त्रिज्या a के सभी वृत्तों के अवकल समीकरण की कोटि है


अवकल समीकरण `"dy"/"dx" (x log x) + y` = 2logx का समाकलन गुणक है


अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है


अवकल समीकरण `x "dt"/"dx" + 2"y"` = x2 का हल है


अवकल समीकरण `x "dy"/"dx" - y` = sinx का समाकलन गणक ______ है।


दीर्घ वृत्तों जिनका केंद्र मूल बिंदु पर तथा नाभियाँ x-अक्ष पर हैं को निरूपित करने वाले अवकल समीकरण की कोटि 2 है।


अवकल समीकरण `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` की घात परिभाषित नहीं है।


अवकल समीकरण  x(1 + y2)dx + y(1 + x2)dy = 0 का व्यापक हल (1 + x2)(1 + y2) = k है।


अवकल समीकरण `"dy"/"dx" + 2x"y"` = y को हल कीजिए।


उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।


`2("y" + 3) - x"y" "dy"/"dx"` = 0 को हल कीजिए जबकि y (1) = – 2 दिया है।


अवकल समीकरण `cosx ("dy")/("d"x) + "y"sinx` = 1 का समाकलन गुणक है।


`(x"dy")/("d"x) - "y" = x^4 - 3x`  का समाकलन गुणक है:


अवकल समीकरण `(1 - x^2) ("dy")/("d"x) - x"y"` = 1 का समाकलन गुणक है


अवकल समीकरण `("dy")/("d"x) + "y" tanx - secx` = 0 का समाकलन गुणक है


वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है


अवकल समीकरण `sqrt(1 + (("dy")/("d"x))^2)` = x की घात ______ है।


`("dy")/("d"x) + "y"` = sinx का व्यापक हल ______ है।


`("d"x)/("dy") + "p"_1x = "Q"_1` प्रकार के अवकल समीकरण के हल को x.I.F. = `("I"."F") xx "Q"_1"dy"` द्वारा दिया जाता है।


 `("dy")/("d"x) = "f"(x, "y")` जहाँ f (x, y) एक शून्य घात वाला समघातीय फलन है, को हल करने के लिए सही प्रतिस्थापन y = vx है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×