मराठी

वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है

पर्याय

  • `(x^2 - "y"^2) ("dy")/("d"x)` = 2xy

  • `2(x^2 + "y"^2) ("dy")/("d"x)` = xy

  • `2(x^2 - "y"^2) ("dy")/("d"x)` = xy

  • `(x^2 + "y"^2) ("dy")/("d"x)` = 2xy

MCQ

उत्तर

सही उत्तर `underline((x^2 - "y"^2) ("dy")/("d"x) = 2x"y")` है।

 व्याख्या:

दिया गया समीकरण x2 + y2 – 2ay = 0   ......(1)

दोनों पक्षों का x के सापेक्ष अवकलन करने पर हमें प्राप्त होता है

`2x + 2"y" * ("dy")/("d"x) - 2"a" ("dy")/("d"x)` = 0

⇒ `x + "y" ("dy")/("d"x) - "a" ("dy")/("d"x)` = 0

⇒ `x + ("y" - "a") ("dy")/("d"x)` = 0

⇒ `("y" - "a") ("dy")/("d"x)` = – x

⇒ y – a = `(-x)/(("dy")/("d"x))`

⇒ a = `"y" + x/(("dy")/("d"x))`

⇒ a = `("y" * ("dy")/("d"x) + x)/(("dy")/("d"x))`

a का मान समीकरण (1) में रखने पर हमें प्राप्त होता है

`x^2 + "y"^2 - 2"y" [("y" ("dy")/("d"x) + x)/(("dy")/("d"x))]` = 0

⇒ `(x^2 + "y"^2) ("dy")/("d"x) - 2"y"("y" ("dy")/("d"x) + x)` = 0

⇒ `(x^2 + "y"^2) ("dy")/("d"x) - 2"y"^2 ("dy")/("d"x) - 2x"y"` = 0

⇒ `(x^2 + "y"^2 - 2"y"^2) ("dy")/("d"x^2)` = 2x"y"

⇒ `(x^2 - "y"^2) ("dy")/("d"x)` = 2xy

shaalaa.com
अवकल समीकरण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: अवकल समीकरण - प्रश्नावली [पृष्ठ १९४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 9 अवकल समीकरण
प्रश्नावली | Q 59 | पृष्ठ १९४

संबंधित प्रश्‍न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`xdy/dx + 2y = x^2 log x`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x log x dy/dx + y = 2/x log x`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-

y dx + (x – y2)dy = 0


अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।


अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।


एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए। 


निम्न में से कौन सा x और y में समघातीय फलन नहीं है।


अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है


F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।


अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।


`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।


एक तल में सभी रेखाएँ जो ऊर्ध्वाधर नहीं हैं के लिए अवकल समीकरण ज्ञात कीजिए।


यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का  y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`


उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।


y2dx + (x2 – xy + y2) dy = 0 का व्यापक हल ज्ञात कीजिए।


`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।


मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।


यदि y = e–x (Acosx + Bsinx) तब y एक हल है


अवकल समीकरण `cosx ("dy")/("d"x) + "y"sinx` = 1 का समाकलन गुणक है।


`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है


अवकल समीकरण cosx siny dx + sinx cosy dy = 0 का हल है


वह वक्र जिसके लिए किसी बिंदु पर स्पर्श रेखा की प्रवणता उस बिंदु के x-अक्ष (भुज) तथा y-अक्ष (कोटि) के अनुपात के बराबर है वह है


समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है


अवकल समीकरण `(("d"^3"y")/("d"x^3))^2 - 3 ("d"^2"y")/("d"x^2) + 2(("dy")/("d"x))^4` = y4 की कोटि तथा घात क्रमश: है


अवकल समीकरण `("d"x)/("dy") + "P"_1x = "Q"_1` के समाकलन गुणक को `"e"^(int "P"_1"dy")` से लिखा जाता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×