Advertisements
Advertisements
प्रश्न
वक्र कुल x2 + y2 – 2ay = 0, जहाँ a एक स्वेच्छ अचर है का अवकल समीकरण है
पर्याय
`(x^2 - "y"^2) ("dy")/("d"x)` = 2xy
`2(x^2 + "y"^2) ("dy")/("d"x)` = xy
`2(x^2 - "y"^2) ("dy")/("d"x)` = xy
`(x^2 + "y"^2) ("dy")/("d"x)` = 2xy
उत्तर
सही उत्तर `underline((x^2 - "y"^2) ("dy")/("d"x) = 2x"y")` है।
व्याख्या:
दिया गया समीकरण x2 + y2 – 2ay = 0 ......(1)
दोनों पक्षों का x के सापेक्ष अवकलन करने पर हमें प्राप्त होता है
`2x + 2"y" * ("dy")/("d"x) - 2"a" ("dy")/("d"x)` = 0
⇒ `x + "y" ("dy")/("d"x) - "a" ("dy")/("d"x)` = 0
⇒ `x + ("y" - "a") ("dy")/("d"x)` = 0
⇒ `("y" - "a") ("dy")/("d"x)` = – x
⇒ y – a = `(-x)/(("dy")/("d"x))`
⇒ a = `"y" + x/(("dy")/("d"x))`
⇒ a = `("y" * ("dy")/("d"x) + x)/(("dy")/("d"x))`
a का मान समीकरण (1) में रखने पर हमें प्राप्त होता है
`x^2 + "y"^2 - 2"y" [("y" ("dy")/("d"x) + x)/(("dy")/("d"x))]` = 0
⇒ `(x^2 + "y"^2) ("dy")/("d"x) - 2"y"("y" ("dy")/("d"x) + x)` = 0
⇒ `(x^2 + "y"^2) ("dy")/("d"x) - 2"y"^2 ("dy")/("d"x) - 2x"y"` = 0
⇒ `(x^2 + "y"^2 - 2"y"^2) ("dy")/("d"x^2)` = 2x"y"
⇒ `(x^2 - "y"^2) ("dy")/("d"x)` = 2xy
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`xdy/dx + 2y = x^2 log x`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x log x dy/dx + y = 2/x log x`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
`x "dy"/"dx" + y - x + xy cot x = 0 (x ≠ 0)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए-
y dx + (x – y2)dy = 0
अवकल समीकरण `"dy"/"dx" = y/x` का व्यापक हल ज्ञात कीजिए।
अवकल समीकरण `"dy"/"dx" + y/x` = x2 को हल कीजिए।
एक तल में सभी अक्षैतिज रेखाओं का अवकल समीकरण ज्ञात कीजिए।
निम्न में से कौन सा x और y में समघातीय फलन नहीं है।
अवकल समीकरण `"dx"/x + "dy"/y` = 0 का हल है
F(x, y) = `(sqrt(x^2 + y^2) + y)/x` का घात ______ है।
अवकल समीकरण `"dy"/"dx" + "y" sec x` = tan x का व्यापक हल y(secx – tanx) = secx – tanx + x + k है।
`"dy"/"dx"` = 2y–x का हल ज्ञात कीजिए।
एक तल में सभी रेखाएँ जो ऊर्ध्वाधर नहीं हैं के लिए अवकल समीकरण ज्ञात कीजिए।
यदि `(1 + "t")"dy"/"dt" - "ty"` = 1 का y(t) एक हल है और y(0) = – 1 है तो दिखाइए कि y(1) = `-1/2`
उन सभी वृत्तों के समीकरण का अवकल समीकरण ज्ञात कीजिए जो मूल बिंदु से होकर जाते हैं तथा केंद्र y-अक्ष पर स्थित है।
y2dx + (x2 – xy + y2) dy = 0 का व्यापक हल ज्ञात कीजिए।
`"y" + "d"/("d"x) (x"y") = x(sinx + logx)` को हल कीजिए।
मूल बिंदु से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए यदि इस वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता इस बिंदु के x निर्देशांक (भुज) तथा y निर्देशांक (कोटि) के अंतर के वर्ग के बराबर है।
यदि y = e–x (Acosx + Bsinx) तब y एक हल है
अवकल समीकरण `cosx ("dy")/("d"x) + "y"sinx` = 1 का समाकलन गुणक है।
`("dy")/("d"x) - "y"` = 1 का हल जब, y(0) = 1 है
अवकल समीकरण cosx siny dx + sinx cosy dy = 0 का हल है
वह वक्र जिसके लिए किसी बिंदु पर स्पर्श रेखा की प्रवणता उस बिंदु के x-अक्ष (भुज) तथा y-अक्ष (कोटि) के अनुपात के बराबर है वह है
समीकरण (2y – 1)dx – (2x + 3)dy = 0 का हल है
अवकल समीकरण `(("d"^3"y")/("d"x^3))^2 - 3 ("d"^2"y")/("d"x^2) + 2(("dy")/("d"x))^4` = y4 की कोटि तथा घात क्रमश: है
अवकल समीकरण `("d"x)/("dy") + "P"_1x = "Q"_1` के समाकलन गुणक को `"e"^(int "P"_1"dy")` से लिखा जाता है।